您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
人工智能的技术基础是什么?
人工智能,技术,知识人工智能的技术基础是什么?
发布时间:2019-02-08加入收藏来源:互联网点击:
人工智能的技术基础是什么?
回答于 2019-09-11 08:43:50
回答于 2019-09-11 08:43:50
人工智能是一门研究用计算机来模仿和执行人脑的某些智力功能的交叉学科,所以人工智能问题的求解也是以知识为基础的。
知识图谱
如何从现实世界中获取知识、如何将已获得的知识以计算机内部代码的形式加以合理的表示以便于存储,以及如何运用这些知识进行推理以解决实际的问题,即知识的获取、知识的表示和运用知识进行推理是人工智能学科要研究的3个主要问题。
在人们的日常生活及社会活动中,“知识”是常用的一个术语。例如,人们常说“我们要掌握现代科学知识”,“掌握的知识越多,你的机会就越多”等。人们所涉及的知识也是十分广泛的,例如,有的知识是多数人所熟悉的普通知识,而有的知识只是有关专家才掌握的专门领域知识。那么,到底什么是知识?知识有哪些特性?它与通常所说的信息有什么区别和联系?
现实世界中每时每刻都产生着大量的信息,但信息是需要用一定的形式表示出来才能被记载和传递的。尤其是使用计算机来进行信息的存储及处理时,更需要用一组符号及其组合进行表示。像这样用一组符号及其组合表示的信息称为数据。
数据与信息是两个密切相关的概念。数据是记录信息的符号,是信息的载体和表示。信息是对数据的解释,是数据在特定场合下的具体含义。只有把两者密切地结合起来,才能实现对现实世界中某一具体事物的描述。
三者关系图
另外,数据和信息又是两个不同的概念,相同的数据在不同的环境下表示不同的含义,蕴涵不同的信息。比如,“100”是一个数据,它可能表示“100元钱”,也可表示“100个人”,若对于学生的考试成绩来说,可能表示“100分”。同样,相同的信息也可以用不同的数据表示出来。比如,地下工作者为了传达情报信息,可以用一首诗词的每一句的第一个字组成一句话,或诗的斜对角线上的字组成的一句话来传达信息,也可能会用一个代码或数字来表示同一信息。
正如上述,现实生活中,信息是要以数据的形式来表达和传递的,数据中蕴涵着信息,然而,并不是所有的数据中都蕴涵着信息,而是只有那些有格式的数据才有意义。对数据中的信息的理解也是主观的、因人而异的,是以增加知识为目的的。
比如,你看到0571-8888888这样的数字,你可能会根据自己已有的知识猜测到它是一个电话号码,但不知道它是哪个城市的电话号码,但如果你通过一些方法确定0571是杭州市的区号后,以后再碰到相同格式的数据时,你就会知道它代表杭州市的一个电话号码,实际上你的知识也就增加了。不同格式的数据蕴涵的信息量也不一样,比如,图像数据所蕴涵的信息量就大,而文本数据所蕴涵的信息量就少。
数据处理
信息在人类生活中占有十分重要的地位,但是,只有把有关的信息关联到一起的时候,它才有实际的意义。一般把有关信息关联在一起所形成的信息结构称为知识。知识是人们在长期的生活及社会实践、科学研究及实验中积累起来的对客观世界的认识与经验,人们把实践中获得的信息关联在一起,就获得了知识。
终上所述,知识、信息和数据是3个层次的概念。有格式的数据经过处理、解释过程会形成信息,而把有关的信息关联再一起,经过处理就形成了知识。知识是用信息表达的,信息则是用数据表达的,这种层次不仅反映了数据、信息和知识的因果关系,也反映了它们不同的抽象程度。人类在社会实践过程中,其主要的智能活动就是获取知识,并运用知识解决生活中遇到的各种问题。
回答于 2019-09-11 08:43:50
我认为5G才是撑起人工智能的技术基础。
5G具有更大的带宽、更快的传输速度、更低的通讯延时、更高的可靠性。
对于人工智能,需要机器具备学习能力,并可以对数据进行过滤、整理甚至深度分析!
刚好5G以她更宽、更高速、精准的数据传输,像一条信息高速公路一样,为人工智能的发展提供了肥沃的土壤。比如无人驾驶、大型的仓储场所,阿尔法狗等等,都是需要快速精准的收集数据、处理数据,并且对数据进行深度分析加工!这些都是在5G基础上的发展和应用。
回答于 2019-09-11 08:43:50
理解 AI 的基本原理,会发现事物的本质往往并没有大家说的那么复杂。
人工智能发展出很多不同分支,技术原理也多种多样。
深度学习
深度学习的原理是这样的: 机器从「特定的」大量数据中总结规律,归纳出某些「特定的知识」,然后将这种「知识」应用到现实场景中去解决实际问题。
之前有很多事情计算机是做不了的,但是现在人工智能可以做了。
例如2009年康乃尔大学教授Hod Lipson 和其博士研究生Michael Schmidt 研发出的 Eureqa计算机程序,只要给予一些数据,这计算机程序自己只用几十个小时计算就推论出牛顿花费多年研究才发现的牛顿力学公式,等于只用几十个小时就自己重新发现牛顿力学公式,这计算机程序也能用来研究很多其他领域的科学问题上。
但是,当下的人工智能是从大量数据中总结归纳知识,这种粗暴的「归纳法」有一个很大的问题是: 只关注现象,不关注为什么。
即便是人类的经验,并不都是准确的,往往也要违背经验的事情发生,比如“黑天鹅”等。 也正是因为归纳逻辑,所以需要依赖大量的数据。
数据越多,归纳出来的经验越具有普适性。
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |