您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
真正的无人驾驶离我们还有多远?
无人驾驶,技术,人工智能真正的无人驾驶离我们还有多远?
发布时间:2016-12-08加入收藏来源:互联网点击:
真正的无人驾驶离我们还有多远?
回答于 2019-09-11 08:43:50
回答于 2019-09-11 08:43:50
无人驾驶技术是一种即将改变人类未来社会的科学技术,它正在越来越尽力走进我们的生活之中,而且已经有不少无人驾驶车辆在某些区域中走向运营,当5G技术普及的时候,无人驾驶技术全面放开也将随之到来。
无人驾驶技术为什么需要5g技术配合呢?这是因为无人驾驶车辆需要处理大量的计时信息,而且需要做到快速和细致,5g网络技术可以满足这一需要,因此当5g技术成熟且普及的时候,无人驾驶技术也将可以普及。
无人驾驶技术需要随时处理大量即时信息,非5G网络不可,比如当无人汽车在路上行驶的时候,它对道路的规划、以及道路上车辆的情况等需要随时做出及时处理,因此它的行使地图和路况信息需要实时更新,实时和车辆管理系统沟通,无人驾驶车辆通过传感器、摄像头采集到的信息数据量很大,对网络通道的速度、带宽以及数据传输时效性都很苛刻,而且需要大数据云技术的辅助,4g网络还满足不了,唯有5g网络技术才能有效满足。
如果带宽不足的话,那么数据就不能及时传输,无人驾驶车辆就不能对地图和路况信息做出及时调整,那么它在行驶的过程中就很容易出现问题,甚至激发某种事故,所以5g网络技术低延时高带宽的特征,正是无人驾驶技术最需要的,是无人驾驶技术的前提条件。
相对4G网络,5G网络的传输速率提升100倍,其峰值传输速率达到10Gbit/s,所以单位数据的传输用时将会非常短,我们用4G网络下载一部1g容量的电影,大致需要半分钟,而使用5g网络技术不到一秒钟就能完成,这样的速率就可以满足车辆在道路上行驶时出现紧急情况的数据处理。
比如,当很多车辆在高速路上以极小的车距行驶的时候,那么当最前面的车辆出现事故或紧急刹车的情况时,后面的车辆往往来不及反应就会撞上去,这样车辆就很危险了,但是5g网络技术下的无人驾驶技术可以让后面的车辆瞬时感知前面的路况,进而做出及时的避免措施,这样就能避免事故的发生,车辆也就安全了。
随着社会的发展和科学技术的进步,毫无疑问无人驾驶技术终将会大行其道,这是一种可以极大促进社会发展的技术,我国多家人工智能公司在这方面研究多年,已经具有了充足的技术储备,可以说在技术方面已经很成熟,只待5G技术全面普及,那么我们就可以享受无人驾驶技术带来的种种方便和好处了,到时候我们想去哪里,只需要坐上车后说一声到哪里,车辆就像是有司机一样把我们带到目的地,而我们在车上也可以做自己想做的事情,就是睡上一觉也行。
回答于 2019-09-11 08:43:50
在无人驾驶全面落地之前,必须全面解决其面临的各种安全问题。以人工智能技术发展的现状来看,无人驾驶要想全面落地,还有很长的路要走。
近年来无人驾驶技术的爆发的技术基础也源自于2006由Hinton在深度学习领域的革命性成果,由此基于神经网络的深度学习算法得以在计算机视觉、语音识别、以及计算机行为决策方面深度应用,从而构成了无人驾驶软体层面的技术基础,而在实现无人驾驶的工程应用上,已经不存在较大的技术障碍,因而,无人驾驶的天花板依旧在于基于深度学习的AI技术的局限性。
而另一方面,基于AI技术的L4级别的自动驾驶已经开始进入商业化阶段。目前,google Waymo、特斯拉AutoPilot、百度Apollo以及通用Cruise均已实现L4级别的自动驾驶。
然而,2016年的美国,一辆自动行驶中的特斯拉Models撞上了一辆白色拖挂货车,致使驾驶员死亡,这是第一例无人驾驶车祸致死的案例。
事后,有专业人士据车祸地点的环境分析后指出,在强光直射下,依赖摄像头的图像识别系统失效,未能及时检测出前方正在穿过道路行驶的白色货车,同时由于毫米波雷达位置较低,而一般的毫米波雷达垂直视角在±5°以内,导致当Tesla靠近拖挂卡车侧面时,雷达波束从下侧穿过了卡车,导致漏检,从而致使事故发生。车祸发生后,特斯拉改进了无人驾驶系统,并修改了官网关于AutoPilot的释义。
实际上,无人驾驶技术全面落地的最大障碍是安全问题。以深度学习算法为核心的AI技术构筑的无人驾驶系统至今尚未真正解决由“计算机理解偏差”而带来的驾驶安全性的问题。
从AI技术演化的角度来看,深度学习算法为核心的“智能化”实际上并不是真正意义上的智能,而是基于大数据和深度学习算法在“动态规划”原则下对统计意义上“最优解”的达成。因此,当下要想解决无人驾驶的安全性问题,必须在这个框架下将“不安全”的可能性降低到一个低于人类车祸概率的红线之下,才具备无人驾驶走进千家万户的“接受底线”。
今年五月,在宁波举行的第六届中国机器人峰会上,中国工程院院士郑南宁发表了主题为《直觉性AI与无人驾驶》的演讲。郑南宁院士提出,在算法模型下,建立覆盖全部的场景模型是不可能的,但“构造一个基于认知构建的类人自主驾驶,使AI自主驾驶具有类人的决策机制,则能应对高动态和强随机性的交通场景变化。
目前来看,基于人类思维决策机制建立算法模型,使AI具有类人的“意识”以当前的技 术条件还无法达成,一方面,人类的决策往往通过自身多方面的经验达成,而并非固定的在驾驶场景下形成单一的决策机制,另一方面,在大多数人的决策过程中,感性因素常常会占主导地位,而算法决策则是百分百的理性决策,而在某些特定情况下理性决策往往不是“最优选择”。
放眼未来,无人驾驶必定在未来某一个时刻全面应用至出行领域,届时,现有交通规则甚至道路形态或将出现新的变化。而从无人驾驶的初步应用到无人驾驶时代的来临之间,人们将长期处于一个“人类+AI驾驶”的混合出行时代。而在这个过程中,相应的法律法规也必须与之相适应。
如果说安全问题是AI无人驾驶落地的“入场券”那么,无人驾驶与现有交通体系及规则的适应则是一场AI与人类直接的“博弈”。
从本质上看,AI无人驾驶的演进过程,是一个在以提高出现便捷性与安全性的前提下,人类逐渐将出行部分逐渐交给AI负责的过程,在这一过程中,人类在出行领域保留主导权的同时,将出行安全与操控权交付至AI,以实现对人力的解放。
上一篇:传统木桶养蜂如何防治巢虫?
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |