您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
(ptm是什么意思)-ptm职位什么意思
细胞,抑制,肿瘤(ptm是什么意思)-ptm职位什么意思
发布时间:2016-12-08加入收藏来源:互联网点击:
-
;肿瘤细胞发生DNA损伤时,核内ACLY生成的乙酰辅酶A能够促进BRCA1的招募和同源重组修复【53】。
其他小分子代谢物参与蛋白的翻译后修饰也常有报道,如FOXO1和PGC-1α启动子附近的组蛋白H3K9可发生β-羟基丁酰化,促进PCK1的转录和维持记忆T细胞的功能【54】;组蛋白发生乳酰化(lactylation)修饰能够激活相关基因转录,以应对缺氧环境和病原体入侵【55】;琥珀酰化(succinylation)、巴豆酰化(crotonylation)、戊二酰化(glutarylation)修饰等可发挥多样的生物学功能【56-58】;最近的研究发现,氨酰-tRNA合成酶能够把与之关联的氨基酸共价连接到底物蛋白的赖氨酸侧链上,该活性在细胞的氨基酸感知过程中发挥重要作用。
05
机遇和挑战
代谢酶和代谢物的“非经典”功能加速了包括癌症在内的多种疾病的发生和发展,使得这些分子成为临床治疗的潜在靶点。对这些靶点进行直接干预可能选择性的杀伤肿瘤细胞,或者对患者进行相应的饮食干预可能延缓或逆转肿瘤的进程。然而,在分子机制方面代谢酶和代谢物的“非经典”功能仍有颇多争议之处,特别是有相当一部分研究没有经过体内实验的验证。在理想情况下,应当直接编辑基因组上的内源性酶基因,在不影响其催化活性的同时使之丧失“非经典”功能以进行体内的表型检测;还有一部分报道的“非经典”功能并未经过其他课题组的平行验证,结果的普适性存疑。因此,在选取合适的靶点进行临床转化方面,仍然需要学界的共同努力与合作。
06
总 结
本综述总结了代谢酶和代谢物在肿瘤中发挥“非经典”功能的一般性机制,包括:(1)代谢酶的亚细胞区域定位(subcellular compartmentalization):某些代谢酶在核转位后可能充当转录因子或调节因子,而另一些代谢酶的胞内重分布可能会建立新型的蛋白-蛋白相互作用,从而调控或改变细胞信号;(2)热点突变(hotspot mutation):如IDH突变生成D-2HG所导致的表观遗传重塑;(3)靶向蛋白底物(targeting protein substrates):某些代谢酶可能具有蛋白激酶活性,可直接调控蛋白底物的功能;(4)特定代谢底物的可得性(availability of particular substrates)。对代谢酶和代谢物在肿瘤中“非经典”功能的进一步解析,可为肿瘤治疗策略的创新性研究夯实基础。
原文链接:
https://www.cell.com/molecular-cell/fulltext/S1097-2765(21)00698-5
参考文献
1. Pastorino, J.G. and J.B. Hoek, Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr, 2008. 40(3): p. 171-82.
2. Cheung, E.C., R.L. Ludwig, and K.H. Vousden, Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A, 2012. 109(50): p. 20491-6.
3. Roberts, D.J., et al., Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell, 2014. 53(4): p. 521-33.
4. Li, X., et al., Nuclear PGK1 Alleviates ADP-Dependent Inhibition of CDC7 to Promote DNA Replication. Mol Cell, 2018. 72(4): p. 650-660 e8.
5. Lemonnier, F., et al., The IDH2 R172K mutation associated with angioimmunoblastic T-cell lymphoma produces 2HG in T cells and impacts lymphoid development. Proc Natl Acad Sci U S A, 2016. 113(52): p. 15084-15089.
6. Liang, C., et al., Localisation of PGK1 determines metabolic phenotype to balance metastasis and proliferation in patients with SMAD4-negative pancreatic cancer. Gut, 2020. 69(5): p. 888-900.
7. Jiang, Y., et al., PKM2 phosphorylates MLC2 and regulates cytokinesis of tumour cells. Nat Commun, 2014. 5: p. 5566.
8. Jiang, Y., et al., PKM2 regulates chromosome segregation and mitosis progression of tumor cells. Mol Cell, 2014. 53(1): p. 75-87.
9. Yang, W., et al., ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol, 2012. 14(12): p. 1295-304.
10. Yang, W., et al., PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell, 2012. 150(4): p. 685-96.
11. Gao, X., et al., Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell, 2012. 45(5): p. 598-609.
12. Yang, W., et al., Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature, 2011. 480(7375): p. 118-22.
13. Liang, J., et al., Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res, 2017. 27(3): p. 329-351.
14. Hosios, A.M., et al., Lack of Evidence for PKM2 Protein Kinase Activity. Mol Cell, 2015. 59(5): p. 850-7.
15. Liao, K., et al., A Feedback Circuitry between Polycomb Signaling and Fructose-1, 6-Bisphosphatase Enables Hepatic and Renal Tumorigenesis. Cancer Res, 2020. 80(4): p. 675-688.
16. Lu, C., et al., A Noncanonical Role of Fructose-1, 6-Bisphosphatase 1 Is Essential for Inhibition of Notch1 in Breast Cancer. Mol Cancer Res, 2020. 18(5): p. 787-796.
17. Li, B., et al., Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature, 2014. 513(7517): p. 251-5.
18. Li, F., et al., FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nat Cell Biol, 2020. 22(6): p. 728-739.
19. Cong, J., et al., Dysfunction of Natural Killer Cells by FBP1-Induced Inhibition of Glycolysis during Lung Cancer Progression. Cell Metab, 2018. 28(2): p. 243-255 e5.
20. Huangyang, P., et al., Fructose-1,6-Bisphosphatase 2 Inhibits Sarcoma Progression by Restraining Mitochondrial Biogenesis. Cell Metab, 2020. 31(1): p. 174-188 e7.
21. Li, W., et al., NADPH levels affect cellular epigenetic state by inhibiting HDAC3-Ncor complex. Nat Metab, 2021. 3(1): p. 75-89.
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |