您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
中国古代没有数学工具和阿拉伯数字,是如何计算和记录圆周率的?
圆周率,面积,祖冲之中国古代没有数学工具和阿拉伯数字,是如何计算和记录圆周率的?
发布时间:2020-12-06加入收藏来源:互联网点击:
中国古代没有数学工具和阿拉伯数字,是如何计算和记录圆周率的?
回答于 2019-09-11 08:43:50
回答于 2019-09-11 08:43:50
上古时代,人类在适应实际生活需要的同时,逐渐形成一些非常质朴的关于数与形的直观概念。其中,方形与圆形就是自然界最常见的两种基本几何图形。如我国山东省的汉武梁祠石室浮雕,就有“伏羲氏手执矩,女娲氏手执规”的图像,以此可以看出上古时代应用规和矩两种工具(规即圆规,矩类似现在木匠用的角尺)制作方形与圆形。而且发现圆周长与直径的比是一个常数,称它为圆周率。
1706年英国琼斯提出用π表示。数学家德国数学史家莫瑞兹·康托说得好:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。”
在我国上古时期,由于生产工具、生活用具简陋,计数还处在整数范畴,为了计算简单,因此对于圆周长与其直径的关系粗略表示为“径一而周三”。这就是说π=3,可称为古率。以此来计算圆的周长和面积。那时已经有了求圆面积的方法:“半周半径相乘得积步。”即S圆=2πr/2 ×r =πr²。
随着生产、生活、科学研究的发展,需要提高计算和圆有关量的精确度,我国古代科学家对的研究,付出了极大的心血。
西汉的刘歆(约公元前30年-公元后23年)为五莽统一度量衡做铜斛——嘉量歆,由其容积而推得π=3.1547,后人称为歆率。刘歆是我国(有历史记载)研究计算圆周率近似值的第一人东汉张衡(78-139年),他于130年在计算立方体和其内切球的体积比时,推得π=√10≈3.162,是为衡率。三国时代吴国的五番于255年,求得π=3.1555。目前无史料说明他是如何求出来的。
开创我国研究圆周率新纪元的是公元263年三国时代魏国刘徽的“割圆术”。
刘徽的“割圆术”记载在《九章算术》第一卷方田章的第32题的圆面积计算的注文中,他指出利用π=3这一数值算得的结果不是圆的面积,而是圆内接正十二边形的面积,结果比m的真值要小。他由圆内接正六边形算起,逐次把边数加倍,依次算出正12边形的面积、正24边形的面积、正48边形的面积、正96边形的面积、正192…边形的面积、……,这些面积会逐渐接近圆的面积πr²(其中r是圆的半径)。如果设r=1,那么以单位圆内接正2n边形的面积(以S2n表示)来逼近圆面积。
刘徽的“割圆术”中的基础理论涉及的主要关系式有:
南北朝时期的祖冲之(429-500年)出于研究度量衡的需要,在刘歆、刘徽研究圆周率的基础上,继续进行深入研究,算到了圆内接正24576边形,他的成就记载在《隋书》卷十六,《律历志》卷十一内(唐代长孙无忌所编撰)。
…宋末南徐州从事史祖冲之更开密法,以圆径一亿为一丈(即以一丈为直径,把它分成一亿份),圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒数二限之间。密率:圆径一百一十三,圆周三百五十五,约率:圆径七,圆周二十二。兼以正圆参之,指要精密,算氏之最也。所著之书,为《缀术》,学官莫能深究其深奥,是故废而不理。即3.1415926<π<3.1415927;祖率=密率=355/113,约率=22/7.
这是前无古人的三个成就,受到全世界的赞扬和推崇。这是我们伟大中华民族的骄傲。为了纪念祖冲之功绩,在月球被面东经148º、西经17º的地方的一座环形山命名为祖冲之山。
应当指出,当时没有任何计算工具,只能靠摆布算筹来进行计算。
在解决上述的某个问题过程中,经常需要几天、几个月、甚至几年的时间,反复完成多位小数的加、减、乘、除、乘方、开方等非常复杂繁难的运算。可想而知,这需要多么惊人的毅力和艰苦努力,多么高超的运算技巧和方法创新,多么严谨细致入微的习惯和耐心,才能得到精确的结果。
一千多年后,法国数学家书达才得出3.1415926<π<3.1415927,德国数学家渥脱(Otto)也得出π≈355/113.……
现在每年的3月14日是圆周率爱好者的”T”日。他们从世界各地聚到一起,一边吃着馅饼(Pai),一边讨论与π相关的话题。至今人们对T计算的重视和热情仍然不减。也许基于以下三个原因:一是研究π的数字的分布:二是用它来检验计算机设备的完备性和计算的有效性,促进计算机技术的改进和发展;三是人类对圆周率精确度的追求,是人类对事物、问题不断探索的一种锲而不舍的精神体现。
我国古代数学有着自己的历史和自己辉煌的成果,长期以来事实上是被低估了。比如多数人认为《九章算术》是应用问题集,没有看到其中算法的思想。不同于希腊数学的公理化论证(以欧几里得《几何原本》为代表),中国古代数学是算法式的数学。它注重通用的方法,而不是特殊的技巧。
中国古代数学曾经非常辉煌,虽然有些典籍已经遗失。但现存的著作依旧让我们不禁感叹古代数学家的聪明才智。近几十年来,特别是随着计算机技术的发展,算术算法体系的优点被越来越多地发现,其被承认的范围也越来越广,认可的人也越来越多。举一个例子,几乎所有的几何定理,可以完全不通过西方的公理、定理体系,而是通过给出一个固定的算法,在计算机上计算出定理是否正确。
主观上,了解中国数学的传统文化,对于增强我们民族自豪感是有好处的。
参考文献:
凌文伟,中国古代数学成就之一:关于圆周率π的计算
回答于 2019-09-11 08:43:50
祖冲之是这么记载圆周率的“以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间”。
意思是圆周率在3.1415926和3.1415927之间,这个记录直到公元16世纪才被阿拉伯人打破。因为当时还没有阿拉伯数字和小数点的概念,所以祖冲之使用了丈、尺、寸、厘、秒、毫、忽七个单位也表示圆周率。所以有人猜测因为单位不够用,所以祖冲之没有继续计算下去。
祖冲之,南北朝时期,祖籍河北,生于南京,是我国著名的数学家和天文学家。他创造性的发明了《大明历》,大大的提高了古代历法的精确性,是我国第二次非常的历法改革。
《大明历》采用的朔望月长度为29.5309日,和现代天文手段测得的朔望月长度相差不到一秒钟。在《大明历》中,祖冲之提出了在391年插入144个闰月的新闰周。根据新的闰周和朔望月长度,可以求出《大明历》的回归年长度是365.24281481日,与现代测得回归年一年只差50多秒。可见祖冲之的智慧和能力很强。
上一篇:女儿8岁,怎么跟她解释爸爸妈妈要爱爱才能生弟弟或妹妹??
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |