您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
无法理解高数,怎么办?
数学,导数,思维无法理解高数,怎么办?
发布时间:2019-02-08加入收藏来源:互联网点击:
有人说“勤能补拙”,没错,我也是这么想的;还有的说“贵在坚持”,也没错,这也是这个故事所传达出的一个重要信息贵在坚持;有的也可能是说“不懂就要抄书”,至少抄书是个方法。还有人说“理解为王”,这也是这个故事讲的一个非常重要的一点,从几乎学不懂,然后最后到懂为止。
就理解很重要,我们对一个我们不理解的东西,怎么能心生乐趣呢?学问的乐趣就在于解惑,不断的解惑,这个解惑过程中产生的乐趣,如果我们一直不懂它,自己都认为不懂,那这个乐趣很难产生啊。
那么往下,跟大家分享一下,我对这个故事的启发
这故事不断在给我新的启发。
首先抄书能抄出数学家吗?如果抄书能抄出数学家的话,那满大街都是数学家了。他肯定是带着问题抄书,边抄边解答,直到懂为止,有了足够多的解答,就自然就懂了。他心里面的困惑都一一找到了答案,有一些是书上提示的答案,有一些是他根据书上的提示自己独立推导出来的答案,想出来的答案,那么就自然懂。
第二是,我们学习数学,必定需要扎实的基本功,这个基本功是什么?就是刚才讲的那个基本的思维技能,但可惜的是许多人不曾掌握这个思维技能,甚至都没有意识到,我们在做数学的过程中,在不断进行同样的思维操作,那个思维操作就是:基本的问答,不断在做问答,不断地在做加、减、乘、除法,不断地在从问题到定义,到定义的性质,到运算法则,到定理,到定理的应用去解题目,不断地在进行这样的或大或小的思维操作,这些思维操作,就是数学思维的基本的技能,也就是我们学数学的基本功。
第三点是,任何技能的学习,任何技能的掌握,必定是先慢后快,我们想这个,小平邦彦去抄书,如果他一本本地去抄,当但数学的文献浩如烟海,经典著作多得不得了,他如果都是这么慢慢的抄的话,那得抄到何年何月?正因为他抄的过程中,他不断地去熟悉和训练自己的思维技能,任何数学分支都有同样的结构,一旦熟悉这个技能,那就熟能生巧了。
反之,一旦我们前面的东西没掌握,认为它很简单,认为它很显然,认为它不值得一做,很可能在遇到那个考研题目的时候,我们都没有解题思路,甚至了解题思路,我们做不对,做不出来,
还有这么几个启发。
第一,不要纠结于有没有天资,除非努力过。即便是小平邦彦,他学数学的初期,仍然遇到很大的困难,我们在学高数的过程中,遇到困难的时候,看不懂的时候,题目做不出来的时候,经常会自我怀疑,是不是我数学真的就不行啊?我没有数学思维啊?
不是,不是那样子的。认知神经科学的研究表明,我们天生下来就有数学思维。严格的论证,之后跟大家来分享一下。不要再纠结这个问题了,除非我们努力过。连这样的数学家都做过这样的努力,那我们,我们问问自己,我们有没有做过这个与之相,相当的这个努力。
第二,“如果世界上有奇迹,那只不过是努力的代名词”,我们能解一道题目,中等难度的题目,只不过是由那些基本的知识点,那些基本的思维操作所导出来的。一道更难的题目也是一样的,我们解了一道很难的题目,会感到骄傲,感到是个奇迹,那只不过是我们以前以往点点滴滴的努力累积出来的,就是像积分一样,一点一点的积累出来的。
第三,没有绝对懂与不懂,关键是我今天有没有懂得更多。我今天懂了多少,我今天究竟懂了什么?我今天找到了哪些问题的答案,这是关键。包括我们在做一道题目的时候,我做错了,做错的话,我有什么收获?我做对了,也要问自己究竟收获了多少?一是一,二是二,三是三,我们有没有这么去做?这样做
回答于 2019-09-11 08:43:50
我还是觉得要高中数学基础比较不错才好,因为和高数都是关联一起的
首先要理清高数总体的知识框架。高数的主体是微积分。微积分分为微分学和积分学两部分,微分学和积分学的基础和核心思想都是极限,极限的思想是贯穿于始终的,所以首先要掌握极限的定义。微分学的中心问题是求导问题,反映在几何上就是切线问题,求导也就是求函数变化率的极限,所以一定要掌握和理解导数的定义;积分学的中心问题是求积问题,求积是求导的逆过程,难度比微分学要大,积分分为不定积分和定积分,值得注意的是,不定积分和定积分的定义并不相同,但是定积分可以通过不定积分的算法来求解。微积分中的难点是复合函数的求导和求积问题,也就是换元思想的应用,需要多做题来更好的理解。然后要弄清微积分的考点,这样会更有针对性,比如等价无穷小替换,求极限,连续,间断,分断函数分断点处导数的求法,高阶导数,洛必达法则,最值问题(求一阶导数),凹凸问题(求二阶导数),用换元法和分部积分法求积分等。课本一定要多看几遍,每一遍都肯定能有新的收获。
回答于 2019-09-11 08:43:50
高等数学相对于小学和初中数学来说具有以下的特点:
高度的抽象性,理解的连贯性。
学习高等数学,在课堂教学上要注意以下问题,也就是讲课前的预习一定要充分,课中的学习一定要能跟得上老师的思路,课后一定要及时的来进行归纳总结。这里重点讲课前。嗯,大学的学习状态和高中相比具有量大的明显的特征。如果不注重课前的预习,那么在课中就无法跟得上老师的脚步就会致使你学习产生一定的困难。而高等数学它的高度的抽象性和理解的连贯性,又是你在某一个方面无法理解的时候,在以后的方面也会产生一系列的后患。
所以说在高等数学的学习遇到问题的时候,一定要回过头来仔细的查找,到底在高等数学学习开头的时候是哪里的理解不够充分,不够准确,不够细致。
高度的抽象性和理解的连贯性也对于人的思维能力具有一定的要求。总体来看,学好高等数学一是需要勤奋,二是需要有一定的悟性,三是还要有合适的适当的方法。在具体的学习过程中,需要根据自己的实际情况,及时的向老师和周边同学进行请教。
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |