您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
无法理解高数,怎么办?
数学,导数,思维无法理解高数,怎么办?
发布时间:2019-02-08加入收藏来源:互联网点击:
这张图片给了我关于这个答案的深刻的启发,这张图片是我读研究生的时候,在一个关于力学的国际研讨会上,有一位学者,第一张幻灯片就播放的是这张图片。这张图片就几个要素,首先最核心肯定是坐在椅子上这位学者,周围是书籍,各种书籍,实验仪器等等,很郁闷。旁边两位学者在窃窃私语,下面这句话讲的是:“After twendy years of research. Quimzydeveleped the answer…now he’s forgotten the question.”也就是说:Quimzy研究了二十年,找到了答案,却忘记了问题!
这三行小字,当我第一次读到的时候,对我是一个强烈的震撼。因为我终于找到答案了。它道出了:学问的本质,数学的本质是什么?这个本质就是:问答。他虽然研究了二十多年,搞了很多的成果,所谓的成果,但是他却陷入了困惑,为什么陷入困惑?因为他不知道他得出的这些结果,究竟能回答什么问题。这就像我们学习高等数学是一样的,我们在整天做题目,看书,可是我们看到脑子里面这些东西,究竟能回答什么问题。越来越模糊了,那么于是就陷入了困惑,甚至进入了数学学习的困惑。
爱因斯坦在《物理学的进化》开篇就讲,“提出一个问题,往往比解决一个问题更为重要,因为解决一个问题,也许是一个数学上或实验上的技巧,而提出新的问题,新的可能性,从新的角度看旧问题,却需要创造性的想象力,而且标志着科学的真正进步。”
这段话用来描述我们数学学习的过程,同样恰当。我们可以这么说,在数学的学习历程中,提出一个问题往往比解决一个问题更为重要,因为解决一个问题,也许是一个数学上的技巧,而提出新的问题,新的可能性,从新的角度看旧问题,却需要创造性的想象力,而且标志着数学学习的真正进步。
康托,20世纪最伟大的数学家之一,集合论的创始人,他说了这么一句话,“在数学的领域中,提出问题的艺术,比解答的,解答问题的艺术更为重要。”
费曼的老师惠勒说过一句话,“没有问题,没有答案”。这句话道出了任何学问的本质,我们所有的学问,所有的知识,都是为了回答问题。但是如果没有问题的话,如果在我们的课本里面,在我们的学习过程中,没有提出这个问题,没有提出足够数量的问题,那么我们在脑袋里面堆积的那些东西都是学问的细枝末节,甚至是僵死的知识。
费曼的老师这么说,费曼也是同样的,费曼20世纪最有名的物理学家之一。费曼在《别逗了,费曼先生》(实际上是个人传记)这本书里讲了他在巴西期间一个教学历程,在巴西的教学让他感到很头疼,如图片右边这段话,他说我无法推动他们做到的另一件事,是问问题。”“他们”,这里的“他们”就是指那些学生,那些大学生。“终于一个学生告诉我其中的原因,如果我在课堂上问你问题,之后大家都会跑来说,你为什么浪费大家的时间,我们的目的是学东西,但你却打断他,问他问题。”费曼对这个现象的评论是,“这是一种打压别人的坏风气,事实上大家全都不懂,但他们表现出一幅很懂的样子,以把别人比下去。”
四、数学学习的九个境界
数学精深训练有九个台阶。
第一个台阶是能看懂。
第二个台阶是能记住;
第三个台阶是会解题;
什么是能看懂?能看懂,就是能够懂得数学定义,定理,公式的来龙去脉。一看到这个定理、公式,脑子里面盘旋的一些问题,我们一一找到答案,我们要从内心里面去回答,那么找到的答案越多,做出来的问答越多,我们就懂得的越多,这就是能看懂的含义。
往往是这一步,使得很多人难以入门,一旦我们做到这一点的话,我们马上就迈上了第一个台阶,迈上第一个台阶之后,能记住会解题,只要我们把那些最基本的东西给做出来,做一遍,亲自动手去算一遍,那么我们马上就会跨过第二个、第三个台阶。
这样的话,考一个及格的分数就不成问题了。有不少人把高数的考研目标定为90分,实际上做完刚才所说的这些,每一章,每一节都这么去做的话,考90分根本不成问题。
第四个台阶是熟练解题;
在解题的过程中不断地进行这样的有意识的思维操作的训练,那么熟练解题也为之不远了。
第五个台阶是会梳理;
什么是会梳理?刚才已经给大家分享了数学的基本结构是什么?每一章都在重复同样的基本结构,把那些知识点都给汇总到这个知识结构里面,就是会梳理。包括我们每一章都在用什么样的运算技巧?大家心里面有没有数,这一章我们会用到什么,什么样的运算技巧,能不能1、2、3、4、5、6、7、8,这么列出来,一是一、二是二的列出来,如果这么做了,那肯定是会梳理了。
第六个台阶是融会贯通;
什么是融会贯通?比如导数,是从什么问题引入的?导数的定义,它的严格的定义是什么?它对应的几何直观是什么?导数怎么推出导数的四则运算法则?导数的定义和运算法则又有什么用?能解什么样的题目?如果我们一步步这么做下来的话,那就是融会贯通了,对这一章,这一节融汇贯通了。
第七个台阶是把握数学思维;
什么是把握数学思维?所谓的数学思维就是一个一个的基本的思维操作,像加、减、乘、除法,各种类型的加、减、乘、除法,像加一项、减一项,像它的定义,为什么会有这样的定义?它的问题是什么?这个定义能解决什么问题?当我们提这些问题,去找它的答案的时候,按照这样的思维去训练的时候,我们就把握数学思维了。
第八个台阶是体验学习的乐趣;
一旦我们做到前面这几步的话,那数学的学习自然就有乐趣,设想一下,我们面对一块黑板或者一张白纸,我们从导数的定义开始做起,一下就把这一套全都写下来了,不用看参考书,从导数的定义一直推出这个导数的运算法则,解出一些基本函数的导数,然后解出更复杂函数的导数。这里面能没有乐趣吗?当然有乐趣了。而且我们回答了心中的一个又一个的问题,而这些问题呢,它不但可以提高成绩,还可以跟其他人来交流,给其他人带来启发。
第九个台阶是能够投入,忘我的学习。
达到第八个台阶就很容易到达第九个台阶了,就是乐此不疲,我们称之为心流,flow。我们这样子学习三个小时的数学,感觉时间才过了半个小时一样。
四、五、六、这个台阶迈上去,那么我们数学考个优秀的成绩,考个120分,就不是问题了,如果我们到达了这七、八、九,这三个境界,那么考更高的成绩,像我刚才那个师弟讲的,考130分,140多分,那就是完全有可能的了,因为你都觉得数学学习都不是负担了,不是障碍了,不是痛苦而是享受了,解道难题会带来巨大的乐趣啊。
五、读不懂数学怎么办?
如果我们到了现在还觉得数学不太容易懂,高数书看起来很头疼,我们往下看看个例子。
我们看一下小平邦彦的故事,小平邦彦是亚洲第一获得菲尔兹奖的数学家,小平邦彦经常说自己天资不好,但是他从中学开始,就是那种做事情一丝不苟,全身心投入的人。他回忆自己第一次学习范德瓦尔登的《代数学》,几乎学不懂;然后就开始抄书,一直到抄懂为止。对于这样的一个大数学家,他在数学学习的初期,也遇到了巨大的困难,看书看不懂。所以我们经常说,看书看得很吃力,很费劲,这实际上本质上根本就不是个问题。那这个故事给你什么启发呢?
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |