您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
skymap_skymap电子星图中文
射影,罗斯,空间skymap_skymap电子星图中文
发布时间:2019-02-08加入收藏来源:互联网点击:
彭罗斯详细叙述了 1963 年 12 月 1 日一次驾车旅行的确切时刻,当时他意识到,有一种方法可以将这些局部观测结果构造成一个完整的全局图景,用来描述时间箭头(arrow of time)。他认识到,实线将复平面分为正虚部和负虚部,这种基本的分解也是用黎曼球面来模拟的。从北极向南半球上的点的投影等同于负频率,随时间向后退行,而从北极向北半球上的点的投影则等同于正频率,沿光锥上部的方向(反天映射)随时间前行。这一分析给出了时间方向的全局图景。彭罗斯宣告:“我找到了我的空间!”(1987 年,第 8 节;2004 年,993 页以后)
通向实在之路
天球只定义了时空中的一个点,即观者在当前时刻的位置。光锥的所有光线在时空中的单个点汇聚。因此,每个扭量只定义单个点。问题变成如何将这些点组装成由离散元素组成的协合空间,以及如何在没有已有的坐标系的情况下做到这一点。换句话说,我们的目标是定义一个空间,首先它具有量子粒度(quantum graininess),因此不是无限可分的;其次它完全由自身组成,而不涉及任何其他系统。按照物理学家的说法,此种空间应该是组合空间,与背景无关。早在 1958年,彭罗斯就提出了自旋网络(一个带有内部计数系统的拓扑拼砌)的概念来表达这样的空间。到 1968 年,他开始发表这一观点,十年后,自旋网络在数理物理学界中广为人知。彭罗斯将这一想法描述如下:
这里描述的理论中出现的“方向”皆由系统之间的相互关系所定义,它们一般不会与先前给定的(且是不必要的!)背景空间中的方向一致。在这里获得的空间,将被认为(确实必须被认为)是由系统本身决定的空间。希望对上述方案的一些修改能够考虑到诸系统相对速度的影响,从而也许可能建立四维时空。(上述理论中不含时间,甚至到事件的时间顺序与此无关的程度!)(Penrose 1979,306 页)
自旋网络后来的发展证明,在大型聚集体中,它们的外观和功能类似于空间,因此与经验是相容的。该方案的各种修改已经发展,包括高维自旋泡沫。但是,目标仍然是“得到那种完全离散的、明显是‘组合的’理论框架……要深入到大自然的最微细致尺度上来理解其运作机制,这一框架是必不可少的”(Penrose 2004,958 页)。
彭罗斯对扭量的希望是,它们可以用来弥合当代物理学中相对论和量子物理学之间最严重的鸿沟,首先把它们放在同一个编号系统中;还有一个很大的鸿沟要跨越;量子物理学是关于过去的故事;后向光锥描述因果过去。如前所述,所有可能影响当前时刻的事件都必须在光锥内,因为只有这样,任何信息或影响才有时间到达当前时刻。过去在光锥外发生的任何事件,都必须以比光速更快的速度在当前时刻到达指定的地点。从相对论者的观点来看,物理学是关于未来的故事。事件受到引力相互作用的影响,此时此刻质量扭曲了局部空间,从而改变了未来。未来光锥向引力质量倾斜;甚至类时间路径(在空间中没有任何方向,但只是通过时间)向质量倾斜。
量子力学的佯谬在于,过去光锥之外的事件似乎确实影响(即纠缠)在当前时刻所做的测量。为了解释因果关系锥外部事件的佯谬,一种流行的观点认为光锥必须是模糊的(fuzzy);它们朦胧的表面,包括可能被误认为在光锥之外的点。彭罗斯设想,存在许多毗连的、叠加的光锥,事件是模糊的,直到它们卡入其中的一个或另一个:“在扭量处理中,则是‘光线’未变但‘事件’变得模糊。” (Penrose 2004,966 页)这种量子多重态(quantum multiplicity)通过“水平大约为一个引力子(gravitron)或更大的尺度”的引力相互作用,被分解成明确的经典结果(Penrose 1989,367 页)。
另一项建议是认为光锥是刚的,这样,倾斜未来光锥也会倾斜过去光锥,从而扫进光锥并导致外部的因果过去事件。如果人停下来想一想,光锥的刚旋转是完全反直觉的:过去就是过去,一去不复返,而未来则受当前事件的影响。从现在开始的事件,没有理由影响过去的情况;毫无疑问,光锥应该会在其夹点处合上。当然,如果光锥由空间中的线组成,它们就会分裂。我建议将光线解释为射影直线,解释光锥在旋转时如何保持刚。从零射线的角度来看,从过去到现在到未来的路径不可能有分离,因为这些点之间没有距离。光线的射影质意味着光锥不能在其夹点处合上,因此必须是刚的。使未来光锥倾斜以改变可能的未来不可避免地使过去光锥倾斜,将光锥以外的事件带入因果过去(图 10)。
图10 旋转一个刚光锥,会将光锥之外的事件带入因果过去。
彭罗斯的扭量纲领,可以概括为主要基于三个洞见。他意识到,光线的路径更像是射影直线,而不是空间中的直线,洛伦兹变换也可以作为莫比乌斯变换来完成,而光锥的完整图景(紧化图景)将它们描绘成三维球面上连在一起的平行圆圈(霍普夫纤颤)。接下来至少有四个有希望的结果。所有的物理学,包括相对论,都可以使用相同的复数作为测量系统。粒子中自旋的起源,被看作几何学的函数。全局时间之矢,及其对熵(entropy)的影响,与空间的描述结合。最后,这一扭量纲领保证了一个与背景无关的空间组合结构。彭罗斯承认,尽管这个庞大而未完成的扭量纲领目前在纯粹数学领域取得了比物理学更全面的成功,但研究人员各自仍在继续研究这个纲领的不同部分。自旋网络连同其对非连续空间的描述,尤其鼓舞人心。此外,在过去两年里,爱德华· 威滕(Edward Witten)找到了一种把扭量和弦理论结合起来的方法,通过这些思想的融合,他可以在更可信的四维,而不是弦理论通常的十一维上搞弦理论。
虽然彭罗斯经常被贴上柏拉图主义者的标签,因为他专注于几何学的首要地位来定义什么是可能的,但彭罗斯实际上更像一个亚里士多德主义者,他坚持认为我们所观察到的就是实在,我们的问题来自应用了一些错误的模型。“对于那些时空维数超出我们直接可观察(即1+3)的理论,”彭罗斯说,“我看不出有何理由值得相信,它们使我们背离了物理学认识的方向。”(Penrose 2004,1011 页)彭罗斯有时又说,扭量只是一种替代表述:“它可能被简单地看作为解决标准物理理论中的问题提供了新的数学方法。”相反,扭量可能被视作为所有物理学基础提供了一个替代框架,其特点是“事件概念(时空点)从主要角色降到次要角色”(Penrose and Rindler,第 2 卷, viii 页)。在这个表述中,扭量的价值是深远的;彭罗斯想要用反直觉的复数和射影来换取反直觉的高维。既然它们在数学上等价,就采取更接近我们体验的空间模型。射影模型(projective model)把我们从错误的空间概念中解放出来,使我们走上了通向实在之路(The road of reality)。
本文到此结束,希望对大家有所帮助呢。
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |