您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
(科普下外心的性质和定义及外心是什么交点
外心,角形,外接圆(科普下外心的性质和定义及外心是什么交点
发布时间:2016-12-08加入收藏来源:互联网点击:
关于到现在外心的性质和定义及外心是什么交点这个话题,相信很多小伙伴都是非常有兴趣了解的吧,因为这个话题也是近期非常火热的,那么既然现在大家都想要知道外心的性质和定义及外心是什么交点,小编也是到网上收集了一些与外心的性质和定义及外心是什么交点相关的信息,那么下面分享给大家一起了解下吧。
外心是指三角形三条边的垂直平分线(中垂线)的相交点。用这个点做圆心可以画三角形的外接圆。指三角形外接圆的圆心,一般叫三角形的外心。三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等。外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
证明
注意到外心到三角形的三个顶点距离相a等,结合垂直平分线性质,外心定理其实极好证。
计算外心的重心坐标是一件麻烦的事。先计算下列临时变量:
d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。
c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。
外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。
设O是三角形ABC的外心则∠AOC=2∠ABC,∠AOB=2∠ACB
与多边形各角都相交的圆叫做多边型的外接圆。
三角形一定有外接圆,其他的图形不一定有外接圆。
三角形的外接圆圆心是三条中垂线的交点,直角三角形的外接圆圆心在斜边的中点上。
三角形外接圆圆心叫外心。
有外心的图形,一定有外接圆(各边中垂线的交点,叫做外心)
三角形外心的性质:
性质1:锐角三角形的外心在三角形内; 直角三角形的外心在斜边上,与斜边中点重合; 钝角三角形的外心在三角形外。
性质2:三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心,外心到三顶点的距离相等。
性质3:点G是平面ABC上一点,那么点G是⊿ABC外心的充要条件:(向量GA+向量GB)·向量AB= (向量GB+向量GC)·向量BC=(向量GC+向量GA)·向量CA=向量0。
本文到此结束,希望对大家有所帮助呢。
上一篇:(科普下托里拆利生平简介
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |