您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
既然神经元的结构非常简单,那么为什么不制造几百亿个模拟神经元来模拟人脑?
神经元,突触,大脑既然神经元的结构非常简单,那么为什么不制造几百亿个模拟神经元来模拟人脑?
发布时间:2019-02-08加入收藏来源:互联网点击:
既然神经元的结构非常简单,那么为什么不制造几百亿个模拟神经元来模拟人脑?
回答于 2019-09-11 08:43:50
回答于 2019-09-11 08:43:50
人类大脑的魅力来自于其重要性和独特性,长久以来,关于大脑的研究发展迅速,但是我们距离真正的人造大脑到底还有多远?人们孜孜不倦的研究人造大脑的目的何在?
人脑神经细胞每秒可以完成信息传递和交换数达1000亿次,功能远远超过世界最强大计算机。而更令人惊叹的是,人脑消耗的能量如果换算成电功率的话仅为25瓦,并且大部分能量都用于大脑的日常运转。如此高效的信息处理系统,科学家们自然不会放弃研究和开发人造大脑的机会。
目前,人们对大脑的内部结构已经有了一定程度的认知。成年人的大脑约重1.2–1.4 kg,约为人体总重量的2%。大脑包括端脑,脑干和小脑。脑干主要作为连接端脑、小脑和脊髓的重要通道,小脑是运动的主要调节中枢,端脑是脊椎动物脑的高级神经系统的主要部分,分为左右两半球,可以控制运动、产生感觉及实现高级脑功能等。端脑主要包括大脑皮层和基底核,大脑皮层是主要由神经元的胞体组成的覆盖在端脑表面的灰质,皮层深处则为神经纤维形成的白质,白质中又有灰质团块,即为基底核。
尽管皮质的厚度仅为2~3 mm, 但是它是赋予大脑高效荣誉的原因所在:皮质是人类的思考总部,所有的想法、决定几乎都产生于此。这是因为皮质是神经元的聚集地,约三分之二的神经元在此运作,一块针头大小的皮质,就含有近三万神经元。各个神经元依靠自身的成百上千的突触互相联系,大脑的基本功能就是基于神经元所构成的网络系统。一个神经元本不突出,但是上百亿的神经元组成的复杂网络森林就可以创造无穷可能。各个神经元依靠化学信号与电子信号彼此交流,由于突触数量之多,信号传递距离短,以及信号分子多样性等等,使大脑的信息处理能力远非计算机所能企及 。
那么,人造大脑的研究意义就仅限于创造更加高效的信息处理系统么?答案并不是如此简单。人们希望创造出拥有和人类大脑相近的具有认知功能的硬件和软件系统,在以下科学研究领域均具有重要意义 :
1 、在认知神经科学领域,建立可靠的大脑模型有助于理解大脑工作的深层机制。
2 、在人工智能科学领域,有一点一直备受争论:是否能够创造出具有人类全部功能的机械。思维实验证明这种期待在理论上是可以实现的。
3 、创造拥有哺乳类动物(尤其是人类)同样复杂的神经中枢系统的机器,最终目标是创造出表现出类人类行为和智能的“强人工智能”。
培养皿里的迷你“大脑”:
早在2013年,科学家们就试图利用多能干细胞在体外培养大脑类器官,并且成功得到了可以反应大脑早期发育过程的豌豆大小类大脑组织 。
大脑类器官的培养主要可以概括为四个步骤:
1、 在合适培养条件下培养人类多能干细胞直到拟胚体;
2、 拟胚体在神经诱导培养基中培养生成神经外胚层;
3 、将培养体转移到基质胶滴中,于分化培养基条件下进行培养,在基质胶和培养基的共同作用下神经外胚层细胞开始增殖生长。但是由于脉管系统的缺失,类器官生长尺寸一般较小;
4、 将类器官转移到旋转生物反应器中,使其进一步生长。旋转生物反应器的使用是类器官培养中一个创新突破,可以促使培养基中的营养物质进入类器官内部的细胞中,从而缩短细胞倍增时间、促进细胞增殖、丰富细胞外基质成分。经过20~30天如上述的3D培养,就可以获得具有特定人类大脑区域,例如前额皮质、枕叶、海马和视网膜等的大脑类器官。实验过程中,各个阶段条件的控制是需要细心把握的。
而科学家之所以希望建立这样的体外大脑组织模型,则是希望可以更好的研究大脑早期的发育以及多种神经类疾病。因为小鼠等动物模型脑部发育和人类大脑发育存在明显差异,例如小鼠大脑内不具有人类大脑的外脑室下区和内纤维层等关键部分,有关于神经疾病的研究仅依靠动物实验难以取得成果。研究人员利用3D培养,成功构建了头小畸形患者的大脑类器官,在体外解剖试验类器官后,验证了此类疾病的发病机理。由此可见,这种人工培养的大脑类器官为精神疾病的研究提供了更精确的工具。
在后续的研究中,通过改善培养条件,例如降低多能干细胞数量、优化神经诱导培养基和增加脑源性神经营养因子等,研究者可以培养大脑类器官长达九个月。在来自31个人类大脑类器官的80000个细胞中,利用单细胞RNA测序方法,研究者发现在六个月培养后,类器官拥有七种神经细胞,包括视网膜细胞和皮层细胞,表明大脑类器官具有细胞多样性。研究中还发现类器官中的视网膜细胞具有光响应的功能,为未来调控类器官的神经网络活性和物理感应提供了可能 。
研究人员发展了另一种3D培养生成层状大脑皮质结构的方法,这种层状大脑皮质结构被称为人类大脑皮层球状体。这种培养方法的关键是人诱导多能干细胞的悬浮培养以及培养过程中各种培养基和抑制剂的调控。
主要培养步骤如下:
首先将人诱导多能干细胞集落自饲养层细胞上酶处理脱离下来,随后将悬浮的细胞集落转移到具有去除成纤维细胞生长因子的分离血清培养基中,在低粘附培养盘上培养。几小时内,细胞集落会形成球体结构。为了得到快速高效的神经诱导效果,研究者利用小分子抑制了骨形态发生蛋白和转化生长因子信号通路。悬浮培养的第六天,悬浮球体被转移到含有FGF2和表皮生长因子的无血清培养基中。第25天开始,利用脑衍生神经营养因子促进细胞分化。第43天起,仅用神经细胞培养基对球体进行培养,随后得到最终的大脑皮质球体。研究者利用转录谱在两个时间点对大脑皮质球体和人胎儿脑组织进行了对比,经机器学习算法分析后,发现球状体和大脑发育过程中直到中孕晚期都具有一定程度的重叠。利用抗体验证和阵列断层X射线成像技术等实验,研究者发现球体包含人类大脑皮质表层和深层的神经细胞,细胞表现出自发活动,周围被胶质细胞包围,且可以形成功能性突触。
最近,研究者利用这种方法,调整了培养条件,得到了具有谷氨酸能和伽马氨基丁酸能神经细胞的类似前脑背侧和前脑腹侧的球状体,将两种球状体在试管中共同培养后,研究者分析了二者的相互作用并观测到了中间神经元的跳跃迁移。这种迁移广泛存在于正常胎儿脑组织中,有利于之后中间神经元与谷氨酸能神经元的功能性结合以及微生理系统的生成,而提摩西综合症患者脑组织中此类迁移表现出明显异常。研究结果表明此大脑球体有希望被应用于大脑发育和神经类疾病的探索 。
机器能够思考吗?
另外一些研究者,他们的目光并不在培养盘里的类脑组织上,而是在思考是否可以使机器具有与人类相同的思考功能。
上一篇:为什么要提出种好自留地呢?
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |