您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
数据分析技术现在发展得怎么样?
数据,数字,信息数据分析技术现在发展得怎么样?
发布时间:2020-12-06加入收藏来源:互联网点击:
现在,专注于最后一列。这显示了客户提出投诉的次数。您可以操纵这些数字。将它们加在一起以给出总数的投诉是有用的信息,因此,它们是数字数据。
我们可以查看的另一个示例是每日历史股价数据。
*这是我们在课程Python课程中使用的内容。
您在此处看到的数据集中,有一列包含观察日期,被视为分类数据。还有一列包含股票价格的数字数据。
当您使用大数据时,事情会变得更加复杂。除了“数字”和“分类”数据之外,您还有更多的选择,例如:
文字数据
数字图像数据
数字视频数据
和数字音频数据
数据清理
也称为“ 数据清理” 或“ 数据清理”。
数据清理的目的是处理不一致的数据。这可以有多种形式。假设您收集了包含美国各州的数据集,并且四分之一的名称拼写错误。在这种情况下,您必须执行某些技术来纠正这些错误。您必须清除数据;线索就是名字!
大数据具有更多数据类型,并且它们具有更广泛的数据清理方法。有一些技术可以验证数字图像是否已准备好进行处理。并且存在一些特定方法来确保文件的音频 质量足以继续进行。
缺失值
“ 缺失的 价值观”是您必须处理的其他事情。并非每个客户都会为您提供所需的所有数据。经常会发生的是,客户会给您他的名字和职业,而不是他的年龄。在这种情况下您能做什么?
您是否应该忽略客户的整个记录?还是您可以输入其余客户的平均年龄?
无论哪种最佳解决方案,都必须先清理数据并处理缺失值,然后才能进一步处理数据。
处理传统数据的技术
让我们进入处理传统数据的两种常用技术。
平衡
想象一下,您已经编制了一份调查表,以收集有关男女购物习惯的数据。假设您想确定谁在周末花了更多钱。但是,当您完成数据收集后,您会发现80%的受访者是女性,而只有20%是男性。
在这种情况下,您发现的趋势将更趋向于女性。解决此问题的最佳方法是应用平衡技术。例如,从每个组中抽取相等数量的受访者,则该比率为50/50。
数据改组
从数据集中对观察结果进行混洗就像对一副纸牌进行混洗一样。这将确保您的数据集不会出现由于有问题的数据收集而导致的有害模式。数据改组是一种改善预测性能并有助于避免产生误导性结果的技术。
但是如何避免产生错觉呢?
好吧,这是一个详细的过程,但概括地说,混洗是一种使数据随机化的方法。如果我从数据集中获取前100个观察值,则不是随机样本。最高的观察值将首先被提取。如果我对数据进行混洗,那么可以肯定的是,当我连续输入100个条目时,它们将是随机的(并且很可能具有代表性)。
处理大数据的技术
让我们看一下处理大数据的一些特定于案例的技术。
文本数据挖掘
想想以数字格式存储的大量文本。嗯,正在进行许多旨在从数字资源中提取特定文本信息的科学项目。例如,您可能有一个数据库,该数据库存储了来自学术论文的有关“营销支出”(您的研究主要主题)的信息。大数据分析技术有哪些https://www.aaa-cg.com.cn/data/2272.html如果源的数量和数据库中存储的文本量足够少,则可以轻松找到所需的信息。通常,尽管数据巨大。它可能包含来自学术论文,博客文章,在线平台,私有excel文件等的信息。
这意味着您将需要从许多来源中提取“营销支出”信息。换句话说,就是“大数据”。
这不是一件容易的事,这导致学者和从业人员开发出执行“文本数据挖掘”的方法。
数据屏蔽
如果您想维持可靠的业务或政府活动,则必须保留机密信息。在线共享个人详细信息时,您必须对信息应用一些“数据屏蔽”技术,以便您可以在不损害参与者隐私的情况下进行分析。
像数据改组一样,“数据屏蔽”可能很复杂。它用随机和假数据隐藏原始数据,并允许您进行分析并将所有机密信息保存在安全的地方。将数据屏蔽应用于大数据的一个示例是通过“机密性保留数据挖掘”技术。
完成数据处理后,您将获得所需的宝贵和有意义的信息。我希望我们对传统数据与大数据之间的差异以及我们如何处理它们有所了解。
https://www.toutiao.com/i6820650243210609166/
回答于 2019-09-11 08:43:50
应该说才刚刚起步吧,朝阳产业,我也是年纪大了,要不然真想去学习大数据分析
回答于 2019-09-11 08:43:50
寒武纪大数据致力于线下场景的数据采集,再到数据分析,为企业精准营销,寒武纪特有庞大数据库,能够为企业精准找到合适的人群
上一篇:初中毕业生学些什么比较好?
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |