您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
不锈钢电阻器(不锈钢电阻器工艺流程)
不锈钢,电抗器,奥氏体不锈钢电阻器(不锈钢电阻器工艺流程)
发布时间:2020-12-06加入收藏来源:互联网点击:
2、铁素体系不锈钢
铁素体系不锈钢是体心立方结构,代表钢种是409、430,其耐蚀性不如奥氏体不锈钢。主要特点是:
l抵抗应力腐蚀开裂能力优越于奥氏体系不锈钢;
l常温下带强磁性;
l热处理不能硬化,具有优秀的冷加工性。
3、马氏体系不锈钢
马氏体系不锈钢常温下具有马氏体组织,代表钢种有410、420。主要特点是:
l马氏体系不锈钢常温下具有强磁性,一般来讲其耐蚀性不突出,但强度高,使用于高强度结构用钢。
l高温下具有稳定的奥氏体组织,空冷或油冷下转变成马氏体相,常温下具有完全的马氏体组织。
4、双相不锈钢
成分中高Cr高N,常温下具有奥氏体和铁素体混合相,代表钢种是2304、2205、2507。主要特点是:
l在高温下基本为铁素体组织,在冷却至室温时具有30-50%铁素体+奥氏体双相组织。
l屈服强度高、超强的耐点蚀、耐应力腐蚀能力,易于成型和焊接。
5、沉淀硬化系不锈钢
沉淀硬化不锈钢按其组织可分成马氏体沉淀硬化不锈钢(以0Crl7Ni4Cu4Nb为代表),半奥氏体沉淀硬化不锈钢(以0Crl7Ni7Al和0Crl5Ni25Ti2MoVB为代表)和奥氏体加铁素体沉淀硬化不锈钢(以PH55A、B、C为代表)。这类材料是利用热处理后时效析出Cu、Al、Ti、Nb等的金属化合物来提高材料的强度。主要特点是:
l这种类型的不锈钢可借助于热处理工艺调整其性能,使其在钢的成型、设备制造过程中处于易加工和易成型的组织状态。半奥氏体沉淀硬化不锈钢通过马氏体相变和沉淀硬化,奥氏体、马氏体沉淀硬化不锈钢通过沉淀硬化处理使其具有高的强度和良好的韧性。
l铬含量在17%左右,加之含有镍、钼等元素,因此,除具有足够的不锈性外,其耐蚀性接近于18-8型奥氏体不锈钢。
四、不锈钢成分中合金元素的作用
一般情况下纯金属具有比较高的塑性,当加入其他合金元素后,形成单相固溶体时也有较好的塑性,如铁镍合金可形成连续固溶体,因此铁与镍在任意比例的情况下,合金的塑性都是很高的。
但在含有其它元素的条件下,形成不溶于固溶体或部分溶于固溶体的金属间化合物,使金属的塑性降低,因此合金的塑性比纯金属或单相固溶体的塑性差。
l铁(Fe):是不锈钢的基本金属元素;
l铬(Cr):是主要铁素体形成元素,铬与氧结合能生成耐腐蚀的Cr2O3钝化膜,是不锈钢保持耐蚀性的基本元素之一,铬含量增加可提高钢的钝化膜修复能力,一般不锈钢中的铬含量必须在12%以上;
l碳(C):是强奥氏体形成元素,可显著提高钢的强度,另外碳对耐腐蚀性也有不利的影响;
l镍(Ni):是主要奥氏体形成元素,能减缓钢的腐蚀现象及在加热时晶粒的长大;
l钼(Mo):是碳化物形成元素,所形成的碳化物极为稳定,能阻止奥氏体加热时的晶粒长大,减小钢的过热敏感性,另外钼元素能使钝化膜更致密牢固,从而有效提高不锈钢的耐Cl-腐蚀性;
l铌、钛(Nb、Ti):是强碳化物形成元素,能提高钢的耐晶间腐蚀能力。但碳化钛对不锈钢的表面质量有不利影响,因此在表面要求较高的不锈钢中一般通过添加铌来改善性能。
l氮(N):是强奥氏体形成元素,可显著提高钢的强度。但是对不锈钢的时效开裂影响较大,因此在冲压用途的不锈钢中要严格控制氮含量。
l磷、硫(P、S):是不锈钢中的有害元素,对不锈钢的耐腐蚀性和冲压性都会产生不利影响。
五、不锈钢的一般物理性质
1、热传导
v不锈钢的热传递速度比较慢,例如:不锈钢的热传导率和铝相比430钢种为1/8,304钢种为1/13,与碳钢相比分别为1/2和1/4。
v常温下与其它材料相比较的热传导率如表5-1所示。
2、线膨胀
v与碳钢相比304钢种的线膨胀系数较大,430钢种的线膨胀系数稍小。另外,铝、铜的膨胀系数要比不锈钢大。
v各种材料的线膨胀系数如表5-1所示。
表5-1各种材料在常温下的热传导率和线膨胀系数
热传导率(×102)W/(m×℃)
线膨胀系数(×10-6)/℃
SUS430
SUS304
3、不锈钢的电阻器
与纯金属相比,合金的比电阻一般比较大,不锈钢也是如此,与它的构成元素Fe、Cr、Ni相比,电阻值明显要大。钢中的合金元素越多,电阻就越大,如304钢种要比430钢种大,310S钢种则更大。
表5-2各种材料的电阻
比电阻(室温条件下)Ω×cm
1.62×10-6
1.72×10-6
2.75×10-6
7.2×10-6
9.8×10-6
17×10-6
青铜(锡-铜)
15×10-6
SUS430(铁-18%Cr)
60×10-6
SUS304(铁-18%Cr)-8%Ni
72×10-6
SUS310S(铁-25%Cr)-20%Ni
78×10-6
NiCr(nNi-Cr)
108×10-6
铁-Cr-铝合金
140×10-6
4、不锈钢的磁性
表5-3各种材料的磁性性质
SUS430
SUS304
非磁性(冷加工时有磁性)
1.5(65%加工)
SUS301
非磁性(冷加工时有磁性)
14.8(55%加工)
SUS305
5、应变硬化指数(n)
v应变硬化指数就是通常所说的n值,表示材料冷作硬化现象的一个指标,可以反映材料的冲压成形性能。
v应变硬化指数大,显示材料的局部应变能力强,防止材料局部变薄能力强,使变形分布趋于均匀化,材料成形时的总体成形极限高。
6、冷加工诱变马氏体转变点Md(30/50)
vMd(30/50)=551-462(C+N)-9.2Si-8.1Mn-13.7Cr-29(Ni+Cu)-18.5Mo-65Nb
表示经30%的冷变形后生成50%马氏体的温度。
v马氏体转变点Md(30/50)越低,在冷加工变形过程中诱变马氏体不容易产生,冷作硬化程度小,越有利于拉深成形。其中Ni含量对诱变马氏体转变点的影响是很明显的,Ni含量高,马氏体转变点降低,材料在冷变形过程中硬化程度小。
2)产生原理
v不锈钢的冷作硬化现象主要是由两种原因引起的:
一种是位错增多引起的加工硬化;
一种是组织转变(奥氏体转变为马氏体转变)引起的加工硬化。
v对SUS430钢种而言,加工变形过程中不会发生组织转变,其冷作硬化现象全部是由位错的增多引起的。
v304钢种在冷变形过程中两种硬化现象都存在,而且组织转变引起的硬化是主要的,这也是奥氏体不锈钢的冷作硬化现象比铁素体不锈钢要明显、加工硬化系数(n值)大的原因。
7、晶粒度(N)
晶粒度的物理意义可根据以下公式表示:
n=2N-1
n―放大100倍时平均每161.25px2(1平方英寸)内所含晶粒数目
N―晶粒度
2)解释与应用
v晶粒度N级别越高,单位截面积上的晶粒数越多,材料的晶粒就越细,强度越大。
v晶粒较大时,有利于提高材料的塑性应变比(R),并降低屈强比和屈服伸长。但晶粒较大时,它们在材料表层取向不同,变形量差异比较明显,材料表面易出现“桔皮”现象。细化晶粒可减轻桔皮现象发生,但晶粒过细,R值会减小,屈强比和屈服伸长都会增大,不利于成形。
v304钢种的晶粒度一般要求在7-9级之间。
六、不锈钢材料的基本性能
1、屈服强度(力学符号Rp0.2,英文缩写YS)
上一篇:不准哭完整歌词
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |