您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
(林祥国)-百度一下,你就知道)-赣榆籍最大的官
建筑物,形态学,方法(林祥国)-百度一下,你就知道)-赣榆籍最大的官
发布时间:2019-02-08加入收藏来源:互联网点击:
林祥国(百度一下,你就知道 赣榆籍最大的官)
构建与学术的桥梁 拉近与权威的距离
林祥国1, 张继贤2
1. 中国测绘科学研究院, 北京 100830; 2. 国家测绘产品质量检验测试中心, 北京 100830
收稿日期:2017-02-28; 修回日期:2017-04-30
基金项目:国家自然科学基金(41371405;41671440);遥感青年科技人才创新资助计划;中央级公益性科研院所基本科研业务费(777161103)
第一作者简介:林祥国(1981—), 男, 副研究员, 博士后, 硕士生导师, 主要从事遥感影像分析、激光雷达点云数据处理方法研究。E-mail:linxiangguo@casm.ac.cn
摘要:高分辨率遥感影像建筑物提取是摄影测量与遥感领域的一个热门研究主题。本文综合利用影像分割、基于图的数学形态学top-hat重建技术,提出了面向对象的形态学建筑物指数OBMBI,并将其应用于高分辨率遥感影像建筑物提取。首先,建立像素-对象-图节点的双向映射关系;然后,基于图的白top-hat重建和上述映射关系来构建OBMBI图像;接着,对该OBMBI图像二值化、矢量化以获取建筑物多边形;最后,对结果进行后处理优化。使用一景航空、一景卫星全色影像对本文方法和PanTex方法进行性能测试。试验表明,本文方法的建筑物提取精度显著的优于PanTex方法。其中,本文方法平均比PanTex方法的正确率高9.49%、完整率高11.26%、质量高14.11%。
Object-based Morphological Building Index for Building Extraction from High Resolution Remote Sensing Imagery
LIN Xiangguo1, ZHANG Jixian2
Abstract: Building extraction from high resolution remote sensing images is a hot research topic in the field of photogrammetry and remote sensing. In this article, an object-based morphological building index (OBMBI) is constructed based on both image segmentation and graph-based top-hat reconstruction, and OBMBI is used for building extraction from high resolution remote sensing images. First, bidirectional mapping relationship between pixels, objects and graph-nodes are constructed. Second, the OBMBI image is built based on both graph-based top-hat reconstruction and the above mapping relationship. Third, a binary thresholding is performed on the OBMBI image, and the binary image is converted into vector format to derive the building polygons. Finally, the post-processing is made to optimize the extracted building polygons. Two images, including an aerial image and a panchromatic satellite image, are used to test both the proposed method and classic PanTex method. The experimental results suggest that our proposed method has a higher accuracy in building extraction than the classic PanTex method. On average, the correctness, the completeness and the quality of our method are respectively 9.49%, 11.26% and 14.11% better than those of the PanTex.
Key words: high resolution remote sensing image building extraction region adjacency graph mathematical morphology object-based image analysis
遥感影像是人类获取空间信息的主要来源之一。随着航空航天、通信和信息技术的飞速发展,新一代遥感传感器相继出现,使得大面积获得地球表面的高空间分辨率遥感影像(high spatial resolution remote sensing images,HSRRSI)成为可能。HSRRSI可以更加清楚地表达地物目标的空间结构和表层纹理特征,可分辨地物内部更为精细的组成,地物的边缘信息也更加清楚[1]。面对海量的HSRRSI和多个行业的迫切需求,我们面临着“数据又多又少[2]”的矛盾局面:一方面,数据多到无法处理;另一方面,用户需要的数据又找不到。因此,迫切的需要自动化、智能化与实时化的处理、分析与理解获取的HSRRSI数据。然而,遥感影像目标自动识别是一个难点,已经成为当前数字摄影测量与遥感迈向自动化的一个“瓶颈”[3]。目前,HSRRSI目标识别仍然是摄影测量与遥感、计算机视觉、机器学习、模式识别等多个领域的热门研究课题之一。
城区的HSRRSI中,80%以上的目标是建筑物和道路[4]。建筑物作为一种极其重要的人工地物目标,研究人员已经提出了众多HSRRSI建筑物提取方法。依据自动化程度,已有HSRRSI建筑物提取方法可以分为3个层次:人工目视解译、半自动和全自动。本文仅关注全自动方法。分析已有文献可知,具有代表性的全自动方法可概括为下述5类:
(1) 基于直线段编组的提取方法。例如,文献[5]分析图像中直线段的空间关系,并利用感知编组方法对建筑物进行假设和验证。文献[6]提出了直线分类、排序、合并、调整等处理方法,并采用几何结构元分析方法提取图像中的矩形结构以提取规则建筑物。文献[7]提出了区域分割、区域边缘点Hough变换、直线检测、垂线检测、交点确定、图构建、图搜索的技术流程提取复杂形状的建筑物。
(2) 基于模型的提取方法。例如,文献[8]专门针对“H”类型的建筑物提出了一种底层直线段提取、中层空间投影、高层建筑物定位的建筑物提取方法。文献[9]使用点随机过程提取特定构型的建筑物。
(3) 面向对象的影像分析提取方法。例如,文献[4, 10]综合利用多尺度影像分割和对象的光谱、纹理、形状、空间关系等多种特征进行建筑物的检测。另外,文献[11]对影像进行邻域总变分的分割,并通过分析分割后不同类型建筑物提取的难易程度,提出一种多特征融合的建筑物对象分级提取策略。
(4) 基于阴影或纹理分析的提取方法。例如,文献[12]提出利用阴影提取建筑物的新思路;文献[13]以精确提取建筑物轮廓为目标,基于建筑物阴影特征和图割算法提出一种在高分辨率遥感影像中识别与提取建筑物的方法。另外,基于阴影和建筑物互相依存会增加局部对比度的原理,文献[14-15]提出基于灰度共生矩阵对比度特征的PanTex方法,且该方法已经被相关机构应用于建筑物和建成区识别。
(5) 基于数学形态学的提取方法。文献[16]利用差分形态学剖面构建形态学建筑物指数来提取建筑物,且文献[17-18]在进一步优化该方法。
上述提及的方法中,第1类方法严重依赖边界提取的效果,而HSRRSI存在部分边缘信息不明显、复杂环境产生大量细碎边缘的问题,其适用性和准确性离实际应用还有很大的距离[11]。对于第2类方法,由于限定了建筑物类型、尺寸或构型,其适用性有限。相比前两类方法,后3类方法综合考虑了先验知识、影像特征、模式识别理论等多个因素,具有较多的优势,其研究方兴未艾。但是,相关方法仍然存在流程繁琐、需要较多先验知识、无法满足场景复杂度较高的HSRRSI建筑物提取需求的问题。为此,本文将综合采用后3类方法的优势,基于HSRRSI上阴影与建筑物存在伴生关系、阴影“同物异谱、异物同谱”的概率相对较低且其亮度值较低、建筑物亮度显著高于阴影亮度的先验知识,利用基于图的形态学算子构建“面向对象的形态学建筑物指数”,并将其应用于HSRRSI建筑物提取。
1 基于图的top-hat重建
诞生于20世纪60年代的数学形态学(简称形态学),不仅仅是一种理论,更是一门强大的图像分析技术[19]。目前,已经被广泛地应用于图像滤波、分割、测量等多个领域[19]。然而,目前多数形态学方法作用于采用规则网格结构的图像,导致形态学方法无法应用于规格格网结构之外的其他数据结构。而理论上形态学运算可以扩展到图[19],但是却未见基于图的形态学算子的定义和应用。本文为了将形态学方法应用于影像分割获取的对象,将下述形态学运算作用于图。
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |