您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
黎曼个人简历(资料简介及图片)
黎曼,几何,数学黎曼个人简历(资料简介及图片)
发布时间:2016-12-08加入收藏来源:互联网点击:
-
黎曼(Georg Friedrich Bernhard Riemann,1826~1866)19世纪富有创造性的德国数学家、数学物理学家。1826年9月17日生于汉诺威的布列斯伦茨,1866年7月20日卒于意大利的塞那斯加,终年40岁。早年从父亲和一位当地教师接受初等教育,中学时代就热衷于课程之外的数学。1846年入格丁根大学读神学与哲学,后来转学数学,在大学期间有两年去柏林大学就读,在那里受到C.G.J.雅可比和P.G.L.狄利克雷的影响。,
黎曼 - 人物简介
黎曼,19世纪最富有创造性的德国数学家、数学物理学家。黎曼1826年9月17日生于汉诺威的布列斯伦茨,1866年7月20日卒于意大利的塞那斯加,终年40岁。 黎曼早年从父亲和一位当地教师那里接受初等教育,中学时代就热衷于课程之外的数学。1846年入哥廷根大学读神学与哲学,后来转学数学;1851年以关于复变函数与黎曼曲面的论文获博士学位;1854年6月成为格丁根大学的讲师;1857年升为副教授;1859年接替狄利克莱成为教授;1862年7月以后因患肋膜炎及结核病在意大利疗养。黎曼的著作不多,但却异常深刻,极富于概念的创造与想象,黎曼的工作直接影响了19世纪后半期的数学发展。
黎曼 - 人物生平
“愈贫愈坚”的少年天才
比高斯小五十岁。他的出生地布列塞伦兹是德国的一个村庄,高斯那个时候正好在这个地区进行土地丈量。黎曼的父亲是个牧师,家里很贫困,黎曼从小体弱多病,原本也打算做牧师尽早养家糊口,但是他的数学天才让他有了另一个选择。黎曼从小酷爱数学。他6岁时开始学习算术,不仅能解决所有留给他的数学问题,而且还经常提一些问题来捉弄他的兄弟姐妹。10 岁时他跟一位职业教师学习高级算术和几何,很快便超过了老师,常常对一些问题能做出更好的答案。
由于经济拮据,黎曼中学时总是靠步行奔波于家和学校之间,当然没有能力买书。幸运的是,中学校长及时地发现了他的数学才能,考虑到他经济上的困难,校长特许黎曼可以从自己私人藏书室里借阅数学书籍。有一次,黎曼借了一部数学家勒让德的《数论》,这是一部共859 页的4 卷本的名著,以晦涩难懂著称。黎曼十分珍惜,他如饥似渴地自学起来,6 天之后,黎曼便学完并归还了这本书。校长问他:“你读了几页?”黎曼说:“这是一本了不起的书,我已经全部掌握了。”之后,校长就这本书的内容考他。黎曼对答如流,并且回答得很全面。这个时候,他只有14 岁。 19 岁时,黎曼进入哥廷根大学学习,当时的哥廷根大学由于有高斯而成为世界数学的中心之一,受这里数学研究气氛的感染,黎曼征得父亲同意,决定放弃原本选择的神学,专攻数学。生活虽然清贫,但黎曼学习极为勤勉,此后他转到柏林大学,获得了更多数学家的指点,从而进入新的数学领域。1851年底,黎曼将其博士论文呈交给大数学家高斯审阅。高斯在看了论文之后兴奋不已,对黎曼的论文做出了高度评价,这对高斯来说是罕见的,因为他对别人的赞赏一向极为吝啬。高斯评价:“黎曼先生交来的论文提供了令人信服的证据,说明作者对该文所论述的这一问题作了全面深入的研究,作者具有创造性的、活跃的、真正的数学头脑,具有灿烂丰富的创造力。”
堪与高斯媲美的年轻人
毕业后,贫困依然纠缠着黎曼。但他认为,只要能够勉强维持生活,能够让他研究数学,他就心满意足了。他从不因经济上的拮据而感到沮丧。他一方面积极准备讲师职位的就职演讲论文,另一方面认真从事数学方面的研究工作。他的就职论文具有相当的难度,为了确定论文的选题,他向高斯提交了3个题目,以便让高斯在其中选定一个。
经过不到两个月时间的准备,黎曼就做了“论作为几何基础的假设”的演讲。这被认为是数学史上发表的内容最丰富的长篇论文,其中提出了一种新的几何体系。该篇论文中一大堆陌生概念,一长串复杂的计算,竟然使被誉为世界数学中心的哥廷根大学全体教员除高斯以外一个个眼花缭乱。论文在表述上堪称典范。高斯带着少有的热情在同事面前作了高度评价。
1847年,黎曼转到柏林大学学习,成为雅可比、狄利克莱、施泰纳、艾森斯坦的学生。1849年重回哥丁很大学攻读博士学位,成为高斯晚年的学生。l851年,黎曼获得数学博士学位;l854年被聘为哥廷根大学的编外讲师;1857年晋升为副教授;1859年接替去世的狄利克雷被聘为教授。
忍受清贫坚持数学研究
贫穷仍不断地困扰着黎曼,有时他的一家甚至陷入对口粮都需要算计的地步,不久之后,黎曼的父亲和多个兄弟姐妹相继去世,就是在这种情况下,黎曼仍全身心地投入到数学研究工作之中,终于在众多的数学领域里做出了许多奠基性和创造性的研究工作:他从几何方向开创了复变函数论;他是现代意义的解析数论的奠基者;他对微积分的严格处理作出了重要贡献;他在数学物理和微分方程等领域内也成果丰硕;他对阿贝尔积分和阿贝尔函数的研究,开创了现代代数几何;他首创用复解析函数研究数论问题,开创了现代意义的解析数论;他对超几何级数的研究,推动了数学物理和微分方程理论的发展。随着研究成果的问世,黎曼在数学界的学术声望迅速提高。他受到许多世界著名数学家的赞扬,也最终继承了高斯生前的教席,获得了一个科学家可能得到的最高荣誉。
弥留之际
长时期清贫的生活、过度的操劳、发奋的研究,使得黎曼身体虚弱、精力衰竭。1862年婚后不到一个月就开始患胸膜炎和肺结核,在病魔缠身之际,只要有一些力气,黎曼仍坚持数学研究工作。虽然这个时期黎曼积极就医和疗养,但因病入膏肓终无疗效。1866 年7 月20 日,黎曼死于肺结核,他过早地离开了人世,也过早地离开了数学,年仅40 岁。
黎曼 - 学术成就
黎曼是世界数学史上最具独创精神的数学家之一。黎曼的著作不多,但却异常深刻,极富于对概念的创造与想象。黎曼在其短暂的一生中为数学的众多领域作了许多奠基性、创造性的工作,为世界数学建立了丰功伟绩。
复变函数论的奠基人
19世纪数学最独特的创造是复变函数理论的创立,它是18世纪人们对复数及复函数理论研究的延续。1850年以前,柯西、雅可比、高斯、阿贝尔、维尔斯特拉斯已对单值解析函数的理论进行了系统的研究,而对于多值函数仅有柯西和皮瑟有些孤立的结论。1851年,黎曼在高斯的指导下完成题为《单复变函数的一般理论的基础》的博士论文,后来又在《数学杂志》上发表了四篇重要文章,对其博士论文中思想的做了进一步的阐述,一方面总结前人关于单值解析函数的成果,并用新的工具予以处理,同时创立多值解析函数的理论基础,并由此为几个不同方向的进展铺平了道路。柯西、黎曼和维尔斯特拉斯是公认的复变函数论的主要奠基人,而且后来证明在处理复函数理论的方法上黎曼的方法是本质的,柯西和黎曼的思想被融合起来,维尔斯特拉斯的思想可以从柯西―黎曼的观点推导出来。 在黎曼对多值函数的处理中,最关键的是他引入了被后人称“黎曼面”的概念。通过黎曼面给多值函数以几何直观,且在黎曼面上表示的多值函数是单值的。他在黎曼面上引入支点、横剖线、定义连通性,开展对函数性质的研究获得一系列成果。经黎曼处理的复函数,单值函数是多值函数的待例,他把单值函数的一些已知结论推广到多值函数中,尤其他按连通性对函数分类的方法,极大地推动了拓扑学的初期发展。他研究了阿贝尔函数和阿贝尔积分及阿贝尔积分的反演,得到著名的黎曼―罗赫定理,首创的双有理变换构成19世纪后期发展起来的代数几何的主要内容。黎曼为完善其博士论文,在结束时给出其函数论在保形映射的几个应用,将高斯在1825年关于平面到平面的保形映射的结论推广到任意黎曼面上,并在文字的结尾给出著名的黎曼映射定理。
上一篇:张锡媛个人简历(资料简介及图片)
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |