您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
圆的周长怎么算(你会背圆的周长和面积公式)
正多边形,圆周,面积圆的周长怎么算(你会背圆的周长和面积公式)
发布时间:2020-12-06加入收藏来源:互联网点击:
圆形简单、对称、精致。但是我们到底要怎样去度量它呢?就这个问题而言,其实质是我们要怎样去度量弯曲的形状。
关于圆形,我们需要注意的第一件事情是,圆上的任意一点距离圆心的距离都相等。毕竟,只有这样它才能够成为一个圆。圆上的任意一点距离圆心的距离,我们称之为圆的半径。由于所有的圆其形状都相同,因此只有半径能够使一个圆区别于另外一个圆。圆的周长,我们称之为圆周(circumference,拉丁语“随身携带”的意思)。我想,对于圆而言,最自然的度量便是其面积和圆周。
让我们从做一些近似开始吧。如果我们在圆上放置一定数目的等距离的点,然后连接各点,由此我们就会得到一个正多边形。
这个正多边形的面积和周长的值比圆的相应值要小一些,但这两对值相当接近。如果我们放置更多的点,则可以使这两对值更加接近。假定我们所使用的点的数目很大,比方说为n。于是,我们就得到一个正 n边形,且其面积和周长与圆的真实面积和周长非常接近。关键的一点是,随着正 n边形边数的增多,正n边形也会越来越近似于圆。那么,此正多边形的面积又是多少呢?让我们将它切分成 n个相同的三角形吧。
这样,每个三角形的底边长度就等于正多边形的边长,令其为 s。而三角形的高度则是从圆心到正多边形边的距离,我们称该高度为 h。因此,每个三角形的面积为1/2hs,而正多边形的面积则为1/2hsn。注意到 sn正好是正多边形的周长,因此我们可以得出如下等式:
其中的 p为正多边形的周长。就这样,使用周长和圆心到边长的距离,我们将正多边形的面积精确地表示了出来。
然而,随着边数 n无限地增大,情况又会怎样呢?显然,正多边形的周长 p将会和圆的周长 C越来越接近,而高度 h也将会逼近圆的半径r。这说明正多边形的面积必然会逼近1/2rC,而同时正多边形的面积也一直在逼近圆的真实面积 A。那么,唯一的结论只可能是,这两个数值必然相等,即
这表明,圆的面积刚好等于半径与圆周的乘积的一半。
一种思考该结论的好方法是,设想将圆周展开成一条直线,则该直线和圆的半径刚好形成一个直角三角形。
我们所得出的公式表明,圆形所占据的面积刚好和这个直角三角形的面积相等。
这里,有一种很重要的方法。仅仅通过做一些近似,我们就不经意地得出了圆的面积的精确表示。关键的一点是,我们并不只是做了几个精确程度很高的近似,而是做了无穷多个近似。我们构造了一个精确程度越来越高的无穷近似序列,这无穷多个近似已经足以让我们看出其中的模式并得到它们的极限。换句话说,我们可以从一个有模式的无穷近似序列中得知真理。因此,将这视为迄今为止人类所产生的最伟大的想法,是有一定道理的。
这种奇妙的方法,我们一般称之为穷竭法,它是由古希腊数学家欧多克索斯(Eudoxus,柏拉图的一位学生)于公元前 370年左右发明的。它让我们可以通过构造无穷的直线近似序列来度量弯曲的形状。运用穷竭法构造无穷近似序列的诀窍是,所构造出的无穷序列必须具有某种模式——一个无穷的随机数序列并不能告诉我们什么有价值的信息。因此,只有一个无穷的序列是不够的,我们还必须能够发现其中的模式从而理解该序列。
●●●
现在,我们已经用圆周将圆的面积表示了出来。但圆周是否也可以度量呢?对正方形而言,用相对于边长的比例来度量周长是很自然的,即四周的长度与一条边长的比值。同样,对于圆,我们也可以采用这样的方法。通过圆心的直线与圆的两个交点之间的距离,我们称之为圆的直径(显然直径正好是半径的两倍)。因此,对圆来说,类似的度量将会是圆周与直径的比值,即圆周率。由于所有的圆其形状都相同,
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |