您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
你想象中的人工智能是什么样子的?目前已经实现的又有哪些?
人工智能,机器人,人类你想象中的人工智能是什么样子的?目前已经实现的又有哪些?
发布时间:2019-02-08加入收藏来源:互联网点击:
语音处理:让机器学会“听”和“说”,实现与人类的无障碍交流一直是人工智能、人机交互领域的一大梦想。1920年生产的“Radio Rex”玩具狗可能是世界上最早的语音识别器,第一个真正基于语音识别系统出现在1952年,AT&T贝尔实验室开发的Audrey的语音识别系统,能够识别10个英文数字,正确率高达98%。比如Apple Siri,Echo等。
自然语言处理:人类的日常社会活动中,语言交流是不同个体间信息交换和沟通的重要途径。对机器而言,能否自然的与人类进行交流、理解人类表达的意思并作出合适的回应,被认为是衡量其智能程度的一个重要参照。
规划决策系统:人工智能规划决策系统的发展,一度是以棋类游戏为载体的。比如,AlphaGo战胜李世石,Master对顶级选手取得60连胜,机器人,无人车。
3. 人工智能应用场景
3.1. 语音处理
• 语音处理主要是自动且准确的转录人类的语音。一个完整的语音处理系统,包括前端的信号处理、中间的语音语义识别和对话管理以及后期的语音合成。
– 前端处理:说话人声检测,回声消除,唤醒词识别,麦克风阵列处理,语音增强等。
– 语音识别:特征提取,模型自适应,声学模型,语言模型,动态解码等。
– 语义识别和对话管理:更多属于自然语言处理的范畴。
– 语音合成:文本分析、语言学分析、音长估算、发音参数估计等。
• 应用:包括医疗听写、语音书写、电脑系统声控、电话客服等。
• 未来:真正做到像正常人类一样,与他人流畅沟通,自由交流,还有待时日。
3.2. 计算机视觉
• 计算机视觉指计算机从图像中识别出物体、场景和活动的能力,包含图像处理、识别检测、分析理解等技术。
– 图像处理:去噪声、去模糊、超分辨率处理、滤镜处理等。
– 图像识别:过程包括图像预处理、图像分割、特征提取、判断匹配,可以用来处理分类、定位、检测、分割问题等。
– 图像理解:本质是图像与文本间的交互,可用来执行基于文本的图像搜索、图像描述生成、图像问答等。
• 应用:
– 医疗成像分析被用来提高疾病的预测、诊断和治疗。
– 在安防及监控领域被用来指认嫌疑人。
– 在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多信息。
• 未来:计算机视觉有望进入自主理解、分析决策的高级阶段,真正赋予机器“看”的能力,在无人车、智能家居等场景发挥更大的价值。
3.3. 自然语言处理
• 自然语言处理的几个核心环节:知识的获取与表达、自然语言理解、自然语言生成等,也相应出现了知识图谱、对话管理、机器翻译等研究方向。
– 知识图谱:基于语义层面对知识进行组织后得到的结构化结果。
– 对话管理:包含闲聊、问答、任务驱动型对话。
– 机器翻译:由传统的PBMT方法到Google的GNMT,流畅度与正确率大幅提升。
• 应用:搜索引擎、对话机器人、机器翻译、甚至高考机器人、办公智能秘书。
4. AI、机器学习、深度学习的关系
4.1. 人工智能四要素
1) 数据
如今这个时代,无时无刻不在产生大数据。移动设备、廉价的照相机、无处不在的传感器等等积累的数据。这些数据形式多样化,大部分都是非结构化数据。如果需要为人工智能算法所用,就需要进行大量的预处理过程。
2) 算法
主流的算法主要分为传统的机器学习算法和神经网络算法。神经网络算法快速发展,近年来因为深度学习的发展到了高潮。
3) 算力
人工智能的发展对算力提出了更高的要求。以下是各种芯片的计算能力对比。其中GPU领先其他芯片在人工智能领域中用的最广泛。GPU和CPU都擅长浮点计算,一般来说,GPU做浮点计算的能力是CPU的10倍左右。
另外深度学习加速框架通过在GPU之上进行优化,再次提升了GPU的计算性能,有利于加速神经网络的计算。如:cuDNN具有可定制的数据布局,支持四维张量的灵活维度排序,跨步和子区域,用作所有例程的输入和输出。在卷积神经网络的卷积运算中实现了矩阵运算,同时减少了内存,大大提升了神经网络的性能。
4) 场景
人工智能经典的应用场景包括:
用户画像分析基于信用评分的风险控制欺诈检测智能投顾智能审核智能客服机器人机器翻译人脸识别4.2. 三者关系简述
人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法及应用系统的一门新的技术科学。
机器学习:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。是人工智能的核心研究领域之一,任何一个没有学习能力的系统都很难被认为是一个真正的智能系统。
深度学习:源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
回答于 2019-09-11 08:43:50
想象是无边界的,得从实际状况看待人工智能问题,身边目前已经有一般的语音产品:天猫精灵,苹果siri……等
回答于 2019-09-11 08:43:50
我想象中的人工智能,大概就是丹·西蒙斯在小说《海伯利安》里构建的内核的样子吧。强大、博学、无所不能,把全体人类当成肉鸡,然后居然还发展出了同情人类的所谓“正派”,还会将公案。人类呢?人类对这一切毫不知情,并且还沾沾自喜觉得啊科技好便利……也许是把对自身局限的痛恨投射到整个人类了吧,呵呵呵呵果然就算是人到中年中二病也还是不会好啊。
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |