您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
空气的密度(压缩空气储能技术的“前世今生”)
压缩空气,系统,储能空气的密度(压缩空气储能技术的“前世今生”)
发布时间:2019-02-08加入收藏来源:互联网点击:
图8 一种TS-CAES系统原理图
等温压缩空气储能系统(I-CAES)
顾名思义,I-CAES为等温压缩和等温膨胀过程实现储能和释能。该系统采用一定措施(如活塞、喷淋、底部注气等),通过比热容大的液体(水或者油)提供近似恒定的温度环境,使空气在压缩和膨胀过程中无限接近于等温过程,将热损失降到最低,从而提高系统效率,同时也取消了蓄热系统(相对于TS-CAES),系统部件减少。而等温过程的实现比较困难,原因是其需要较好的强化传热技术,目前仍存在技术难题。同时,虽然等温使压缩机耗功减少,但也意味着压缩机和膨胀机与外界交换的功量减少,这与储能系统需要吸收更多的能量(更高的能量密度)相冲突,因此当储能压力不够高时,I-CAES的能量密度较低。
图9 一种I-CAES系统原理图
水下压缩空气储能系统(UW-CAES)
当空气以气态形式储存在地下洞穴或人造容腔内时,随着储能(充气)或释能(放气)过程的进行,储气室内的压力不断变化,且空气不能被完全释放(需要大量垫底气),否则洞穴坍塌或压缩机出口/膨胀机入口压力过低无法运行,以上因素造成压缩机和膨胀机处于变工况运行,效率不能持续处于高位,同时系统能量密度不高。针对以上问题,UW-CAES通过将储气装置放置在深水(海洋或湖泊)中,利用水压的恒定实现储能和释能过程中压缩机组出口和膨胀机组入口压力恒定,使压缩机和膨胀机一直工作在最佳运行点,且释能时储气装置中的空气可以近乎完全释放。因此UW-CAES具有高效率(~71%)和高能量密度的优点,其适用于海岸线/深海区域的储能。但该系统的储气装置存在制造困难的问题,如需特殊的耐腐蚀材料、需将其固定在海底等。
图10 一种UW-CAES系统原理图
液态压缩空气储能系统(LAES)
借助于空气降温液化技术,LAES系统通过添加流程使空气以液态形式储存,如图为一种LAES系统的流程图,储能时,经过压缩机的高压空气进入回热器降温和降压设备进行液化,被液化的常压低温液态空气储存在储液罐中;释能时,液态空气经过低温泵升压、回热器升温,然后进入燃烧室,与燃料混合燃烧后进入膨胀机膨胀做功。LAES系统中空气以液态形式储存,相对于传统压缩空气储能,其具有不受地理环境限制、能量密度大的优点。但是其依赖化石燃料输入,系统性能受回热器的影响较大。
图11 一种LAES系统原理图
超临界压缩空气储能系统(SC-CAES)
SC-CAES系统为陈海生研究员提出,其利用空气的超临界特性,在蓄热/冷过程中高效传热/冷,并将空气以液态形式储存,实现系统高效和高能量密度的优点,系统兼具 TS-CAES和LAES的特点,同时摆脱了依赖大型储气室和化石燃料的问题。如图为一种SC-压缩空气储能系统原理图,其工作原理为:在用电低谷,空气被压缩到超临界状态(T>132K,P>37.9bar),并在蓄热/换热器中冷却至常温后,利用存储的冷能将其等压冷却液化,经节流/膨胀降压后常压存储于低温储罐中,同时空气经压缩机的压缩热被回收并存储于蓄热/换热器中;在用电高峰,液态空气经低温泵加压至超临界压力后,输送至蓄冷/换热器被加热至常温,再吸收储能过程中的压缩热后经膨胀机膨胀做功,同时液态空气中的冷能被回收并存储于蓄冷/换热器中。
图12 一种SC-CAES系统原理图
综上,各类压缩空气储能技术均具有其自身优势和一定的局限性,但整体来看,蓄热式压缩空储能系统效率较高,具备较为成熟的技术,加之我国有大量的盐洞、废弃矿洞,利用已有洞穴建设低成本的压缩空气储能系统非常有发展前景,因此TS-CAES系统有望在未来几年得到广泛关注和应用。
LAES系统和SC-CAES系统由于具有较高的能量密度,占地面积小,将在无天然洞穴地区受到越来越多的青睐,特别是SC-CAES系统还具有较高效率的优点,其吸引力将更大,但目前仍需进行进一步的技术突破,提高系统效率。UW-CAES系统由于其工作环境,有望在海洋中得到一定应用,未来水下储气装置技术成熟后,可在海洋环境如海上风电储存方面得到一定应用。
I-CAES系统由于无蓄热装置,待等温技术成熟后,系统可兼具流程简单和效率高的优点,但系统能量密度较低,使其在大规模储能领域受限。同时未来,考虑到产能方式及用能方式的多样性,压缩空气储能可与其他热力系统耦合,充分发挥其在促进耦合系统变工况运行上的优势。
除了技术方面的改进,经过多年的应用研究,压缩空气储能系统的应用场景也得到了极大的拓宽。大规模时,其可用于电力系统削峰填谷、可再生能源平滑波动、可再生能源/工业余热耦合利用、火电厂/核电厂变工况辅助运行等,中小规模时,可用于分布式能源系统、分布式微电网、压缩空气储能汽车、无人机弹射技术等方面。
在产业化方面,相对于欧美国家,我国的压缩空气储能产业整体起步较晚,但发展很快。2011年,中国科学院工程热物理研究所率先建成了国际首个超临界压缩空气储能实验平台(15KW);基于该技术及持续的研究工作,2013年,工程热物理所就在河北廊坊建成了MW级的先进压缩空气储能(集成超临界和蓄热式压缩空气储能系统)示范项目,系统效率达到52.1%;进一步,又于2016年底在贵州毕节建成10MW的先进压缩空气储能系统,系统效率进一步提升至60%;而目前正在河北张家口建设的100MW 先进压缩空气储能系统,预计2021年底建成,其系统目标效率将达到70%,单位装机成本降低至450-750美元/kW,已接近抽水蓄能电站的效率及单位装机成本,该系统有望在未来得到广泛应用。
未来碳中和背景下可再生能源发电占比的提升将进一步拉动储能需求,同时压缩空气储能技术进步带来的规模、效率的提升也将推动压缩空气储能成本的不断下降,拓宽压缩空气储能的应用场景。而国家碳交易市场的建立将进一步带动能源市场环保性、经济性要求,也会推动压缩空气储能系统的商业应用。
来源:中国科学院工程热物理研究所