您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
wifi怎么用(无线路由器及Wi-Fi组网指南)
路由器,速率,频段wifi怎么用(无线路由器及Wi-Fi组网指南)
发布时间:2016-12-08加入收藏来源:互联网点击:
因此,Wi-Fi的覆盖建议不用考虑2.4GHz,直接以5GHz全屋覆盖作为设计目标。一般情况下单个路由器在家庭的复杂环境下难以实现无死角覆盖,需要考虑多台路由器之间的组网以及漫游问题,这点后面再讲。
2.3. Wi-Fi关键技术
为什么Wi-Fi的速度越来越快?其实在IEEE的802.11系列协议一直在跟3GPP的4G和5G相互借鉴,使用的底层技术都是通用的。
OFDM/OFDMA
OFDM的全称是正交频分复用。系统会在频域上把载波带宽分割为多个相互正交的子载波,相当于把一条大路划分成了并行多个车道,通行效率自然就大幅提升了。
在Wi-Fi 5及以前(802.11a/b/g/n/ac),子载波宽度是312.5KHz,到了Wi-Fi 6(802.11ax),子载波宽度缩小为78.125KHz,相当于将同样宽度的路划分成了更多的车道。
Wi-Fi 6的拥有更多的子载波
在OFDM下,每个用户必须同时占用全带宽下的所有子载波。如果某个需要发送的数据没那么多,把频率资源用不满的话,其他用户也没法灵活使用,只能干巴巴地排队等着,频谱资源的使用效率不高。
为了解决这个问题,Wi-Fi 6引入了OFDMA技术,后面多了个字母A,其全称也就变成了正交频分复用多址。多址就是多用户复用的意思。
OFDM vs. OFDMA
OFDMA可以支持多个用户在同一时刻共享所有子载波。相当于运输公司把多个用户的数据统一打包,共同装车,充分利用车厢容量,大家的发货速度就都加快了,频谱效率得以提升。
MIMO/波束赋形
路由器上面的天线数量是越来越多,从看不到天线,到一根,两根,三根,四根,六根,八根...现在不管啥价钱的路由器,都长得跟螃蟹似的,张牙舞爪好不唬人。
为啥要用这么多天线?就是为了更好地实现MIMO(多输入多输出)技术。简单来说,就是在信号发射时,用多根天线来同时发送多路不同的数据,速度自然成倍提升;在接收时,多个天线同时接收手机发来的信号,跟戴了助听器一样,接收灵敏度也得到了增强。
单用户MIMO(SU-MIMO)
如果所有天线同时只为一个用户服务,就叫做单用户MIMO(SU-MIMO)。更进一步,路由器四路发射,手机四路接收,也可以更精细地叫做4x4 MIMO。
有时候,路由器的天线众多能力强悍,但四顾茫然,发现手机个个都是弱鸡。路由器能发4路信号,但手机最多只能收两路,最终下来路由器也就不得不配合着只发两路。这不是浪费么?
多用户MIMO(MU-MIMO)
解决办法也是有的,一个手机的接收天线少,多个手机加起来不就多了?于是,路由器便将多个手机一起考虑,视作一个功能强大的虚拟手机,这样就又能实现高阶MIMO了。这种多手机共同参与的MIMO就叫做多用户MIMO(MU- MIMO),又叫虚拟MIMO。
除此之外,多个天线还可以通过波束赋形技术,形成指向性的窄波束,对准用户精准覆盖。由于窄波束的能量集中,因此可以覆盖得更远,穿墙效果也能得以提升。
波束赋形
这样看来,路由器的天线个数是多多益善呀,买路由器就一定要挑天线多的吗?这可能是一个陷阱。天线再多,只是在堆一些外部看得见的硬件而已,看起来牛逼闪闪,但内部的设计到底能否支撑这么多天线还是未知数。
更重要的是,不论是MIMO,还是波束赋形,都是需要软件算法支撑的,这里面的复杂度远高于硬件,不同厂家算法优化能力不同,可能导致很大的性能差异。
因此,建议在购买路由器时,不用太关注外部到底能看到多少根天线,而要看他们的产品宣传,是否支持波束赋形,4x4MIMO,或者MU-MIMO?如果厂家在这方面的宣传声势很大,那至少说明他们对这些功能比较自信并将其作为卖点。
调制编码策略(MCS)
调制编码,分为调制和编码两部分,它们共同决定了单位时间可以同时发送的比特数。调制编码策略一般将调制和编码两部分综合起来分为多个等级,级别越高,数据发送的速率也就越快。
调制的作用就是把经过编码的数据(一串0和1的随机组合)映射到前面所说帧结构的最小单元:OFDM符号上。经过调制的信号才能最终发射出去。
BPSK,QPSK,16QAM,64QAM及256QAM星座图
常用的调制方式包括BPSK、QPSK、16QAM,64QAM和256QAM,能同时发送的比特数为1个,2个,4个,6个和8个。Wi-Fi 6可以支持1024QAM,可同时发送10个比特的数据,速率自然大为提升。
256QAM和1024QAM对比图
可是,原始数据在编码时,为了纠错而加入了很多的冗余比特,真正的有用数据其实只占一部分。我们考虑上网速率时,说的仅仅是有用数据的收发速率,冗余比特都在解码的时候丢弃掉了。
这就要引入码率的概念,也即是有用的数据在编码后总数据量中的占比。如果码率是3/4,就是指编码后的数据中,3/4是有用数据,1/4是后来添加的冗余比特。
不同的调制方式,加上不同的码率,就组成了调制编码策略(MCS)。下表是Wi-Fi 6中的MCS表,可以看出最高阶MCS为11,对应于1024QAM加5/6的码率。
Wi-Fi 6 的MCS表
正是通过这些技术的不断演进,Wi-Fi标准一代代向前,速率越来越高,让我们更为畅快地上网。
3. Wi-Fi的上网速率估算
Wi-Fi到底能达到多大速率呢?
路由器厂家宣传的Wi-Fi 6可以达到1800Mbps,3000Mbps,甚至5400Mbps速率,到底是怎么算出来的呢?
要计算Wi-Fi可以达到的峰值速率,必须用到前文讲到的几点技术:OFDM,MCS,以及MIMO。
OFDM:正交频分多址,把整个系统带宽划分为多个正交的子载波,划分的粒度越细,子载波越多,可同时发送的数据就越多,速率自然也就越高。
此外,OFDM技术最终要把数据打包在一个一个的符号(Symbol)中发送,每个符号花的时间越短,两个符号之间的间隔(Guard Interval,GI)越小,速率也就越高。
MCS:调制编码策略,对速率的影响主要是调制方式和码率这两方面。无线环境越好,可以使用的调制阶数越高,单位时间携带的比特数也就越多,用于检错纠错的冗余比特也就可以少加一些,码率提升,有用数据的发送速率自然也就加快了。
MIMO:也就是通过多根天线,在空间中能同时发送的数据流数。空间流数越多,速率越高。比如,4x4MIMO的理论速率是2x2 MIMO两倍,效果立竿见影。
综上,单个频段Wi-Fi的峰值速率可以用下面的公式来计算。跟5G峰值速率的计算类似,上述公式也可以用公路系统来类比。
Wi-Fi 峰值速率计算公式
空间流数相当于多层交通,子载波数量相当于每层公路上的多条车道,调制阶数相当于路上货车的车厢容积,码率相当于给货物增加了包装箱,OFDM符号时长和符号间隔相当于货车在公路的通行时长再加上发车间隔。
Wi-Fi速率和公路运力的类比
空间流数:随着协议的演进,Wi-Fi能支持的空间流数越来越多,推动峰值速率不断提升。
如下表所示,IEEE制定的802.11ac最多能支持8流,但是Wi-Fi联盟(WFA)在认证的时候,觉得这个能力过于强了,实现起来成本太高,因此就分成了两个阶段:wave 1和wave 2。
各Wi-Fi协议版本支持的空间流数
这两个阶段的能力也比较保守,并未最终实现IEEE的设计能力。Wave 1可支持3流,Wave 2可支持4流。
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |