您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
正态分布的概率密度函数(二维正态分布的概率密度函数)
正态分布,拉普拉斯,概率论正态分布的概率密度函数(二维正态分布的概率密度函数)
发布时间:2019-02-08加入收藏来源:互联网点击:
只见高斯提出了极大似然估计的思想,并猜想人们公认的“算术平均是不会错的估计”等价于对真值的极大似然估计,然后反过来寻找怎样的误差分布能使这一猜想成立。
与常人颠倒的思路竟然让高斯一路畅通无阻,很快,他便证明了在所有的概率密度函数中,使得猜想成立的只有以下一种情况:
正态分布密度函数就这样被高斯推出来了,与此同时,高斯根据他的正态误差理论,确立了最小二乘法的概念。
有了高斯的认证,正态分布迅速活跃在误差分析中,人们可以轻松对误差大小的影响进行统计度量,由于高斯的这几项关键工作,人们将正态分布命名为“高斯分布”。
正态分布的完善
虽然说,要成为一个好的数学家,你首先必须得是一个好的猜想家。尽管高斯得出的结论是正确的,但当初推导的思路确实有点“鸡生蛋,蛋生鸡”的嫌疑。(人们都说高斯是接受了神的旨意。)
于是,正态分布的理论完善就交给了其他数学家。
拉普拉斯看到了高斯发表的理论之后,惊奇地发现这个密度函数分明在自己之前的研究里出现过,并且认定这肯定不是巧合!
拉普拉斯马上将自己的中心极限定理与正态分布理论联系起来:如果将误差看成许多的微小量(称为“元误差”)叠加的总和,根据中心极限定理,随机误差便服从正态分布。
正态误差态分布律
随着中心极限定理的不断完善,高斯的结论也得到了越来越多的理论支持,正态分布逐渐在误差分析中确立了地位,称霸于其他一切概率分布。
如今,正态分布不仅作为理工科学生入门必学技能,还成为了麻省理工学院(MIT)开设概率论的开端,甚至MIT的学生几乎人手一本《概率导论》,简直被安排得妥妥的:
而关于它的命名,自它火了之后,各国人民都争先恐后帮它起名字:由于拉普拉斯是法国人,于是,法国人民称之为“拉普拉斯分布”;高斯是德国人,当时德国就喜欢叫它“高斯分布”;其他国家的人们呢,嗯,不知道站哪边,便直接叫它“拉普拉斯-高斯分布”。
正当人们吵得不可开交的时候,庞加莱站了出来,他建议改用正态分布这一中立名称,后来,统计学家卡尔·皮尔森也说了一句公道话,使得人们接受了正态分布这个名字:
Many years ago I called the Laplace-Gaussian curve the normal curve, which name, while it avoids an international question of priority, has the disadvantage of leading people to believe that all other distributions of frequency are in one sense or another “abnormal”.不过,高斯的名气实在太大了,高斯分布的名字并不是想去掉就去掉的,因此,现在数学界正态分布、高斯分布两个名字通用。
最后,超模君只想感叹一下,高斯的力量一如既往的强啊!
(此处已添加圈子卡片,请到今日头条客户端查看)本文到此结束,希望对大家有所帮助呢。