您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
哥德巴赫简介(资料简历图片)
哥德巴赫,之和,素数哥德巴赫简介(资料简历图片)
发布时间:2020-12-06加入收藏来源:互联网点击:
-
哥德巴赫,出生于1690.3.18是德国数学家,出生于格奥尼格斯别尔格(现名加里宁城)。曾在英国牛津大学学习,由于在欧洲各国访问期间结识了伯努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年到俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年移居莫斯科,并在俄国外交部任职。他在给好友欧拉的一封信里陈述了他著名的猜想――哥德巴赫猜想。成为关于数学的一场革命。,
人物介绍
哥德巴赫(C. Goldbach)并不是职业数学家,而是一个喜欢研究数学的富家子弟。他于1690年生于德国哥尼斯堡,受过很好的教育。哥德巴赫喜欢到处旅游,结交数学家,然后跟他们通讯。1742年,他在给好友欧拉的一封信里陈述了他著名的猜想――哥德巴赫猜想。成为关于数学的一场革命。
哥德巴赫猜想
内容
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了以下的猜想: (a) 任何一个≥6的偶数,都可以表示成两个奇质数之和。
(b) 任何一个≥9的奇数,都可以表示成三个奇质数之和。这就是所谓的哥德巴赫猜想。
哥德巴赫猜想最初的内容也可表述为:
任一大于5的整数都可写成三个质数之和。
而今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个质数之和。
事实上,任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N-1),其中2(N-1)≥4。若欧拉的命题成立,则偶数2N可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。现在通常把这两个命题统称为哥德巴赫猜想。
进展
哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。1937年苏联数学家维诺格拉多夫(и.M.Bиногралов,1891-1983),用他创造的"三角和"方法,证明了"任何大奇数都可表示为三个素数之和"。不过,维诺格拉多夫的所谓大奇数要求大得出奇,与哥德巴赫猜想的要求仍相距甚远。
考虑把偶数表示为两数之和,而每一个数又是若干素数之积。把命题"任何一个大偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"(即"任何一个大偶数都可以表示成为一个素因子个数不超过1个的数与另一个素因子不超过1个的数之和")成立。1966年陈景润证明了"1+2"成立,即"任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和"。
关于偶数可表示为a个质数的乘积 与b个质数的乘积之和(简称“a + b”问题)进展如下:
1920年,挪威的布朗证明了“9 + 9”。
1924年,德国的拉特马赫证明了“7 + 7”。
1932年,英国的埃斯特曼证明了“6 + 6”。
1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
1938年,苏联的布赫夕太勃证明了“5 + 5”。
1940年,苏联的布赫夕太勃证明了“4 + 4”。
1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一很大的自然数。
1956年,中国的王元证明了“3 + 4”。
1957年,中国的王元先后证明了“3 + 3”和“2 + 3”。
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
1965年,苏联的布赫夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
本文到此结束,希望对大家有所帮助呢。