您现在的位置: 首页 > 网站导航收录 > 百科知识百科知识
牛顿(科学家)个人简历(资料简介及图片)
他的,定律,物体牛顿(科学家)个人简历(资料简介及图片)
发布时间:2019-02-08加入收藏来源:互联网点击:
微积分的出现,成了数学发展中除几何与代数以外的另一重要分支――数学分析(牛顿称之为“借助于无限多项方程的分析”),并进一步进进发展为微分几何、微分方程、变分法等等,这些又反过来促进了理论物理学的发展。例如瑞士J.伯努利曾征求最速降落曲线的解答,这是变分法的最初始问题,半年内全欧数学家无人能解答。1697年,一天牛顿偶然听说此事,当天晚上一举解出,并匿名刊登在《哲学学报》上。伯努利惊异地说:“从这锋利的爪中我认出了雄狮”。
微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的结论加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法――微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。
牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。
在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。
1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如:他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。
牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。
牛顿在前人工作的基础上,提出“流数(fluxion)法”,建立了二项式定理,并和G.W.莱布尼茨几乎同时创立了微积分学,得出了导数、积分的概念和运算法则,阐明了求导数和求积分是互逆的两种运算,为数学的发展开辟了一个新纪元。
二项式定理
在一六六五年,刚好二十二岁的牛顿发现了二项式定理,这对于微积分的充分发展是必不可少的一步。二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。
二项式级数展开式是研究级数论、函数论、数学分析、方程理论的有力工具。在今天我们会发觉这个方法只适用于n是正整数,当n是正整数1,2,3,....... ,级数终止在正好是n+1项。如果n不是正整数,级数就不会终止,这个方法就不适用了。但是我们要知道那时,莱布尼茨在一六九四年才引进函数这个词,在微积分早期阶段,研究超越函数时用它们的级来处理是所用方法中最有成效的。
热学方面的贡献
牛顿确定了冷却定律,即当物体表面与周围有温差时,单位时间内从单位面积上散失的热量与这一温差成正比。
天文学的贡献
牛顿1672年创制了反射望远镜。他用质点间的万有引力证明,密度呈球对称的球体对外的引力都可以用同质量的质点放在中心的位置来代替。他还用万有引力原理说明潮汐的各种现象,指出潮汐的大小不但同月球的位相有关,而且同太阳的方位有关。牛顿预言地球不是正球体。岁差就是由于太阳对赤道突出部分的摄动造成的。
哲学方面的贡献
牛顿的哲学思想基本属于自发的唯物主义,他承认时间、空间的客观存在。如同历史上一切伟大人物一样,牛顿虽然对人类作出了巨大的贡献,但他也不能不受时代的限制。例如,他把时间、空间看作是同运动着的物质相脱离的东西,提出了所谓绝对时间和绝对空间的概念;他对那些暂时无法解释的自然现象归结为上帝的安排,提出一切行星都是在某种外来的“第一推动力”作用下才开始运动的说法。
《自然哲学的数学原理》牛顿最重要的著作,1687年出版。该书总结了他一生中许多重要发现和研究成果,其中包括上述关于物体运动的定律。他说,该书“所研究的主要是关于重、轻流体抵抗力及其他吸引运动的力的状况,所以我们研究的是自然哲学的数学原理。”该书传入中国后,中国数学家李善兰曾译出一部分,但未出版,译稿也遗失了。现有的中译本是数学家郑太朴翻译的,书名为《自然哲学之数学原理》,1931年商务印书馆初版,1957、1958年两次重印。
经济学方面的贡献:提出金本位制度。
方程论与变分法
牛顿在代数方面也作出了经典的贡献,他的《广义算术》大大推动了方程论。他发现实多项式的虚根必定成双出现,求多项式根的上界的规则,他以多项式的系数表示多项式的根n次幂之和公式,给出实多项式虚根个数的限制的笛卡儿符号规则的一个推广。
牛顿在还设计了求数值方程的实根近似值的对数和超越方程都适用的一种方法,该方法的修正,现称为牛顿方法。
牛顿在力学领域也有伟大的发现,这是说明物体运动的科学。
第―运动定律是伽利略发现的。这个定律阐明,如果物体处于静止或作恒速直线运动,那么只要没有外力作用,它就仍将保持静止或继续作匀速直线运动。这个定律也称惯性定律,它描述了力的一种性质:力可以使物体由静止到运动和由运动到静止,也可以使物体由一种运动形式变化为另一种形式。此被称为牛顿第一定律。力学中最重要的问题是物体在类似情况下如何运动。牛顿第二定律解决了这个问题;该定律被看作是古典物理学中最重要的基本定律。牛顿第二定律定量地描述了力能使物体的运动产生变化。它说明速度的时间变化率(即加速度a与力F成正比,而与物体的质量里成反比,即a=F/m或F=ma;力越大,加速度也越大;质量越大,加速度就越小。力与加速度都既有量值又有方向。加速度由力引起,方向与力相同;如果有几个力作用在物体上,就由合力产生加速度,第二定律是最重要的,动力的所有基本方程都可由它通过微积分推导出来。
此外,牛顿根据这两个定律制定出第三定律。牛顿第三定律指出,两个物体的相互作用总是大小相等而方向相反。对于两个直接接触的物体,这个定律比较易于理解。书本对子桌子向下的压力等于桌子对书本的向上的托力,即作用力等于反作用力。引力也是如此,飞行中的飞机向上拉地球的力在数值上等于地球向下拉飞机的力。牛顿运动定律广泛用于科学和动力学问题上。
上一篇:李济深个人简历(资料简介及图片)
下一篇:返回列表
相关链接 |
||
网友回复(共有 0 条回复) |